Government Office for the West Midlands
 Renewable Energy Prospects for the West Mıdands
 Final Report

Halcrow Group Ltd

November 2001

Government Office for the West Midlands
 Renewable Energy Prospects for the West Midlands
 Final Report

Halcrow Group Ltd

November 2001

[^0]
Government Office for the West Midlands Renewable Energy Prospects for the West Midlands
 Final Report

Contents Amendment Record

Thus report has been issued and amended as follows

Issue	Reviston	Descriptaon	Date	Stgned
1.0	Final	Renewable Energy Prospects for the West Midlands Fmal Report	$02 / 03 / 01$	
20	Revised Final	Revised final report incotporating addronal assessment of wind resource and sub-regronal assessments	$05 / 11 / 01$	

Contents

Executive Summary 1
1 Introduction 4
11 Content 4
12 Costext 4
13 Puppose and Scope 6
14 Mefhodology 8
2 Electricity Generation and Supply In the West Midlands 11
21 Introduction 11
22 Elecfrutzy Consumpton 12
23 Electraty Generathong Plast 14
3 Renewable Generation Technologies 21
31 Infroduthon 21
32 Setection of Tentnotogtes Suatabse Technologes for the West Madlands 22
33 Onstore Wind 23
34 Betmass 24
35 Hydro Elecho 29
36 Solar 30
37 Theoretrad Resounce for the IW est Midlands 31
4 Economic and Commercial Structure 32
41 Introductors 32
42 Commerwal Framewort 33
43 Praphects for Induadsal Technologites 43
44 Scmmary and Conclustons 50
5 Planning and Environmental Policy 54
51 Introduction 54
52 Hzerarchy of Plansing Gundame Relinting to the Development of Renewable Energy an the West Madland 55
53 Plammag Appicathons 59
54 Methadology 62
55 Current Planning Polvy and Remewabla Energy 65
56 The Contrinuts of Planning Polfy 72
57 Future Plantatisg Polcy 87
58 Conchusoms 92
6 Network Constraints 95
61 Introduction 95
62 Why the Elachaty Network may be a Lamitngy Facter 96
63 Techntcal Lanntastons 99
64 Network Behefits 103
65 Eshmated Networt Capatay 105
66 Setsmary 106
7 Deliverable Resource for the West Mıdlands 110
71 Introdschom 110
72 Defintion of Detverable Resource 110
73 Dehuerable Renewabile Resource 111
74 Sub Regronal_Assessment 117
75 Sensitury 125
76 Comilusons 128
8 Conclusions and Targets 130
 130
82 Natonal Development Patieras 130
83 Probabridy Raments 134
84 Detelopront Lead 136
85 Conthbuton to Renewable Electhaty Targefs from the West Madands 138
86 Project Recommendations 139
87 Final Conclustons 140
Appendix A - Calculations for Each Technology
Appendix B-Respondents to Consultation
Appendix C - Synopsis of Development Plans
Appendix D. Sub Regional Assessment
Appendix E-Glossary of Terms and Nomenclature
Appendix F - Reference and Bibliography

Executive Summary

Aums

The Government published its policy for renewable energy in February 2000 followng an extensive consultation exercise The man objectave of this policy is to increase the contributon of electricsty suppled by tenewables from the cerrent 3%, to 5% by the end of 2003 and to 10% by 2010 Thas as to be achueved only if the costs to consumers are considered to be acceptable

In order to understand how this increase in renewable generatug eapacty may be achueved, the Government Offices for the Regrons have been asked to undertake regronal resource assessments These assessments have the key am of sllustrating how the region may contribute toward the national targets This report covers the West Midiands Regron, and includes the countres of Staffordshire, Shropshure, Herefordshire, Worcestershure, Warwickshure and the West Midlands Conurbation.

Whilst the term 'tenewable energy' can be defined 98 all those sources of energy that are contonuously and sustanably available in the environiment, it must be emphasised that this study is onlv concerned with those resources that have the potenulal to generate electurity

Resources

The physical nature of the region dictates which renewable energy technologies will be surabie for electricity generation. Thus, in the West Midlands, technologes that tap the significant energy resource at sea (tudal wave and offshore mands) are not appropinate In addition, the geological structure of the region is such that temperatutes are not sufficiently elevated neat to the surface to allow the use of geothermal heat Whalst patts of the Region do have stgrificant tainfall totals, the landscape 18 generally low lying, and thus not partecularly suited to large-scale hydro electric developtnent.

Development will therefore be limited to those technologes that utuse wind, blomass (including energy crops and wastes), solar energy and running water

The theoretcally avalable resource from these technologes is extremely large, at about nume tumes the current electricity consumpaon However the development of thas tesource can be expected to be limuted to projects that are econorncallv vable, whech gan the necessary development consents, and have the support of the host community

Plating

At present in the development plan process there is a distanct lack of specific gudance at all levels Whilst some plan policies genemallv encourage the use of renewables, these tend to be too vague, non technology specific, and lacking in locational gudance Regronal Planning Gudance could have a vital role in commuricatigg the relevant technical and planning 1ssues down to all levels and to ensure that these are accurately and comptehensively incorpotated into plans under development.

Conchusions

Currently 3% of the region's electricity consumptoon is generated from tenewable enetgy, primataly from energy from waste resources Whilst there is the potental for the regon to treble this figure from sites that are probably commercially vable and generally environmentally acceptable, this would be extremely challenging to acheve in the next decade - partucularly as a large propotton of this total resource would have to come from wind developments The commercal and cegulatory environment for investment in tenewable energv generation is being set by Government intataves including the Climate Change Levy, the Rencwable Energy Obligaton and New Electricity Tradirg Arrangements It 18 not certann that these will provide sufficient stmulation. They will in any case need to be complemented by a sea change in the support offered to renewable energy from the puble and government at all levels

On present indications and without addimonal support, only propects of existung types mainly in the enetgy from waste sector may actually be delvered by 2010 and these could generate around 5% of the Regron's electricity consumptorn.

This report prowides the data which enables local authontes to Identify respurces in their areas and revew therr policies and gudance accordingly

The analyss assumes a contonung, modest growth in demand for electricity It must be noted that the impact of this electrcity demand growth is that siguficant new generation capacity will be requred over the next decade just to mantan the exisong percentage of supply from renewables in the region

The potental for renewable energy and enetgy efficency improvernents for heat and transport applications to ameliorate the environmental impact of energy usage should not be overlooked

Recommendatrons

- Specific policies and guidance on the explortation of tenewable energy resources should be included in all strategic and local plans This study has shown that renewable energy is an issue for all authontes, whether urban or rural, as development throughout the Region of all technologies will be required of the environmental benefits are to be realised
- Regronal acturites should assist central goveriment in contuuing to support renewable energy development through mecharusms such as the proposed Renewables Obligaton and by forms of subsidy where appropriate The mpotrance of pte-commeral developments cannot be stressed enough as they have a vital role in building market and public confidence to change Addanonally, long term stablury in support mechansms is required to enable commercal projects to taise finance from any source.
- Small scale projects face partucular financial batrers to development under the antactpated market conditons However, this type of project can be valuable in rasing awareness of many types of technologes at a local scale, and can stmulate community involvement in sustainable development. Specific support measures should be developed that recognuse these important toles
* The electucity distribution network needs to be developed to recognise that in future it will have to be operated in a way that allows for the benefits of embedded generatoon to be delvered Reinforcement of lines and other transmussion equpment wrill be tequited to enable many cenewable generators to be connected
- The turne frame of the development of many renewable energy technology projects can be up to 5 - 6 years Thus, action and support is requred immediately if the 2010 targets are to be met, let alone the 2003 targets
- Many renewable energy resources are well sulted to the direct delivery of heat to domestic, commercial and industrial applications To the extent that they substutute for electrically generated heat, they could be argued to contrbute directly to the 2010 target They could also substute for other fossul fuel combuston and help combat global warming in that way Therefore, it is recommended that regronal assessments are also carned out to research the potental of these resources and of wigorous energy efficiency measures to meet the UK's clmate change and sustamablity objectrves

1 Introduction

Contene

The Govemment Offices for the Regions have been asked by Central Govemment to prepare regronal assessments to determme the extent to which the Regrons could contribute to natonal targets for renewable energy development This report, for the Government Office for the West Midlands, Identifies the potental for renewable energy in the Regron and shows how the West Midlands can contribute towards these rational targets

Context

The Govemment published it's new pulicy for renewable energy in Febnary 2000 [DT'l, 2000a] The man objectue of this policy is to inctease the contribution of electrictv supplied from renewables to 5% by the end of 2003 and 10% in 2010 , subject to the costs to the consumer being acceptable In order to achieve this target, the Govemment has introduced four key inuatives
(i) The Renewables Oblygation

The Ututues Act 2000 provides powers fot an obligation on all electricity suppliers to provide an increasing propottion of their electricty from renewable sources. The Renewables Obligation will succeed the Non Fossil Fuel Oblegation (NFFO)
(ti) The Climate Change Levy
A Levy on electricity sales carne into effect in April 2001 as part of the UK's Clumate Change Programme With the excepoon of large-scale hydro, electucty produced from renewables will be exeript from this Levy
(ivi) R\&D Support
The budget for research and development of tenewable technologres has been mereased.
(iv) Regronal Planning and Targets

Regronal strategnes for rencwable energy are being developed and these will be incorporated into Reggonal Planning Guidance

This study forms part of the $4^{\text {th }}$ element - a regional plannung strategy for harnessing the renewable energy resource In its' policy document the Government notes that:
"The planning system bas an important role in helpng to delver the Government's targets and goals for tenewable energy and clmate change, which ate central to achueving sustamable development, while contonuing to protect the countryside A positive, strategic approach to planning for renewable energ) 18 essental There netds to be an open and constructive dialogue between prospective operators, planning authortues and loval people about identifyng sutable sites with senstivisty and care."

Current planning gudance [DETR, 1993] notes that "The Government's polcies for developing renewable energy sources must be weighed carefully with its contuning commatment to policies for protecting the environment." There will mevitably be conflicts of interest here and thus has been evident, to date, whth a relatively poot tate of success for developers in obtaring planning permission for renewable entrgj projects This was not addressed under the previous Non-Fossil Fuel Obligation and is critical if the Goverimernt is to meet its tatgets for renewable energy provision

Subsequent to the publicaton of the new renewable energy policy, the Minister for Housing and Planning, Mr Raynsford addressed the issue of regronal strategres in Parlament In his speech [DETR, 2000a] Mr Raynsford lunked the Government's pollcy for tenewable energy to the development of Regonal Sustanable Development Frameworks Gudance on prepanng Regronal Sustanable Development Frameworks was published in February [DETR, 2000b] and the Government anticepates that the Frameworks will draw on these renewable energy assessments The intual Frameworle for the West Mullands has already been publshed, staung that "tenewable energy generation must be ancreased in the Regron" Any update to this Framework is likely to be more specific Mr Rapnsford also highlighted how the studes will be used to inform a review of Regional Plannug Gudance
" we envsage RPG [Regronal Plannugg Gudance] taking forward in land use terms a region's strategy for deljvenng renewable energy targets by definung broad locatoons for tenewable energ; development and settong criteria to help local zuthorites select sutable sttes to set targets in RPG , where sensible to do so

Thes sets the context for this study Mr Raynsfotd then contmued to outhe his vision for renewable energy development with a caukonary note concerning public paracepazon
"More posituve planning at regional and local levels will contribute to greater fambanty with, and acceptance of, prospective renewable energy developments It remanns important, however, for operators to prepare the ground whth local authontas, envronmental organsations and local people before formal plannung applicatoons are subrnitted and to develop proposals in consultation with them"

Purpose and Scope
In light of the national policy, outhed above, the purpose of thus study is to

- establish the extent to which the West Midlands Regron can contribute towards the national target of acheving 10% of the electricity supply from renewables,
- inform a teview of the Regional Planning Gudance

The West Midlands Regron is shown in Figure 11

The scope of the study was further clanfied and agreed with the Government Office for the West Mdlands as follows

Firstly, the study will consider all renewable energy technologies considered as appropuate or wable in the West Midlands Region There are a wnde range of technologes available for generaung electuraty from renewable sources and these are descrubed in some detail in the Supporting Analysis [DTL, 2000c], accompanying the Government's policy document Whale marne technologites (offshore wind, adal barrage, trdal stream and wave) are obvously not an opton for the Wiest Midlands, the scope for electncity generation is stlll considerable (a bricf sj nopsis of the different technologies is provided in Chapter 3) In some instantes dual fuelling may be appled, whereby a renewable source is used in compunction with a fossil fuel for a partucular generator This relates manly to buomass, for example the use of natural gas in compuction wath landfill gas or two separate fumaces for say coal and straw to feed the same steam turbine Whale such cases mas improve the economics of a projoct in specific instances, they are not common in the UK and do not affect out calculation of the rencwable energy resource on a regional level
$=+$
The West Midlands Region

Secondly, in line with the Government's targer to getnerate 10% of electinaty from renewable sources, this study will not examme the porental for providng thermal energy It is perhaps pertunent to note here that electricity use only actounts for 15% of final energy demand and that the scope for producing thermal energy from renewable sources $1 s$ considerable Withn the European Union, targets for both electricity generation (12%) and pumary energy supply (22%) have been set In the UK renewable energy use accounted for 28% of electncity supply but onlv 17% of primary energy demand in 1999

Thurdly, while the importance of energy effictency and energy conservaton is equally important to the Government's alm to reduce CO_{2} emussions, they are a large subject in themselves and are not the subject of out mivesugations here A bref comment is made in Chapter 2 concerning the projected increase in electuncty consumption over the next 10 years and the mpletations of this for target setung. Sunce energy efficiencv and energy conservation will influence the total electricty demand there is a link between these and the targets for renewable electuctry generatom.

Finally, it is important to beat in mind that this tesource assessment is being conducted actoss a large and diverse atea and so a level of analysss appropriate to a regronal study has been assumed. This entalls using a number of broad assumptons when identrfyng suutable areas for development This does not preclude development outside these areas and individual sites will have to be considered on their ments Whalst a level of sub-regonal assessment is provided (in Appendix D), the assumptons and level of detal rernatns the same as for the regional level assessment Addıtonally, even withun broad arcas identified as surtable for development, local factors will need to be taken into account. The methodology appled is set out in 14 below

Methodology

This study bulds on previous resource assessments such as those carried out for Shropshire [1998a] and the Manweb distribution area [ETSU, 1994a], but represents the first analys1s of the renewable energy resource on a regional level Where appropriate data from previous studes has been used However, due to recent developments in technology and the rapidly changing commercial tegulatory and planning policy framework many of the onginal assumptons have had to be revisited

For the parposes of this study the resouree has been calculated on 3 dufferent levels - theoretical, economic and deliverable

Theoretical Resource

The resource that is technically accessible and limited orlly by reasonable physical constraints The technically accessible resource can be expected to increase with tume and is calculated here on the basss of exisung technology or that which is likely to be developed before 2010

Economic Resource

The tesource that is economically wable wrthin the proposed commercial and regulatory framework. 'The 'proposed' framework minludes the introducton of the Renewables Obligation, the New Electuraty Trading Arrangements and the Climate Change Levy

Deliverable Resource

The resource that can be harnessed after calang into account both econome constrants and the puble policy framework. The pollcy framework includes environmental protecton, development control, land use and waste management practuces

The resource assessment is set out in two different ways In the mam body of the report the theoretucal resource is presented followed by a discussion of the vatious policies that are likely to limst the resource in some way It sets out the background to the assumptions upon whech the calculation of the deliverable resource 18 based It is important that the deliverable resource, targets and conclustons are seen not in isolation but in the light of the preceding discussion The calculations thenselves are presented in Appendx A, together with a record of all the assumptions that have been made From thas the progression from thooretucal to economic to deliverable can be clearly traced

Chapter 3 describes the different technologies that ate considered withun the scope of this study and the theoretical resource that exists for each This is then tefined by applyng two 'filkers' - an economic and a plannung/envitonmental filter

The economic viability of the different technologes is described in Chapter 4 Although the electrcity market is not a truly 'free' market it is assumed that only those technologes which are compentuve, withun the context of the proposed commercial and regulatory framework, will be developed It is passible that certain developments will occur, for non economic reasons but these ate expected to be a small munonty

The environmental and plannung frameworks are described in Chapter 5 While these are not as easilv quantufied as costs and prices, some clear conclusions can be derived from a study of natonal, regronal and local plannung gudance The exsence of these policies is to reconcale the Government's targets for renewable energy, with those fot protecting the environment and reflecting public perceptoons of acceptabuluty

By applving an economic and envionmental/poliç filter, the 'deliverable' proportion of the theoretacal resource can be calculated However, first some comment is made on the ability of the electucity distribution network to accept embedded (such as renewable) generation There is considerable concem as to how latge quantanes of new embedded generaton will be incorporated withun the existang electrictry network However, it is not considered as the base case in th1s study since it is belleved that many of the issues idenafied can be resolved by changes in the regulatory framework at the national level It is important to emphasise that these changes must be forthcoming of the deliverable tenewable energy resource is to be realised

Finally, the deliverable resource is presented in Chapter 7, together with a sensitivity analy sts of the key constraints The deliverable resource is then discussed in relation to potental targets for the Reglon (Chapter 8)

2 Electricity Generation and Supply in the West Midlands

Introductaon

As described in Chapter 1, the pirmary purpose of thss study is to show how the West Midlands region can contrbute towards the national target, which 18 to supply 10% of the UK's electricity from tencwable sources by 2010

The am of this chapter is to esumate the current level of conventoonal and renewable generaton in the Regron, and compare ths to the Regron's expected electncity demand in 2010 While this mught seem like a simple calculation, it depends on a number of assumptions

Firstly, it is not known by how much electncty consumpaon will increase for decrease) over the next 10 years While assumpoons can be made based on recent trends, there are a number of uncertantes depending on, fot example, the uptake of energy efficiency measures and possible changes in energy paces These issues are examuned in 22

Secondly, electucitv consumption 18 measured in unuts of energy as GWh' which reflects both the power used and the nurnber of hours for which at is used However, electrictity generation is typucally recorded in terms of msstalled capacity (MW)2, the maxumum power that can be produced at any one instant. To telate these figures, an assumption must be made about the numbet of hours for which the generatng plant is operational and at what proporton of its maximum capacity In Appendix A, a number of 'conversion factors' (load factors) have been esomated for each different type of generating plant This enables a direct comparison between electricty generation and consumption However, it should be noted that a regional figure for consumption (GWh) can not be easilv converted into a figure for installed capacity because the conversion factor is different for tach technology and so the mux of technologes applied is important

[^1]For example, a 1 MW wnd turbine can be expected, on average, to produce 263 GWh over the course of one year, compared with 075 GWh per MW instatled for solat photovoltacs and 788 GWh per MW installed for landfill gas

Finally, it should be noted that eloctricty generated within the Regnon will not necessarly be consumed within the Regron Thus has always been the case since electucity distribution and supply ate nut influenced bv tegiomal boundaries however, this fact has been accentuated now that the supply industry hos been opened up to competation Between September 1998 and May 1999, compeatorn (prevrouslv ceserved to large electricity consumers) was extended to the under 100 kW market and by October 1999, 33 millon electricity customers had changed suppler [DTI, 1999b] It is therefore perfectly feasible that a customer in the West Midlands could choose to obtain ther electrcity from a suppher as far away as Scotland It is therefore more approprate to refer to electricity dustributed rather than supplied There are three companues distributag electricity within the West Mrdlands Region GPU Power, East Mdlands Electurity and Manweb, each with a monopoly over distribution in therr area

Electrictly Consumpton

In $1998 / 9,26,114$ GWh of electricity was distributed withn the West Midlands region [WMLGA, 1999] In order to estmate the electricity consumption by 2010 it is interesting to examme boh national and regional trends

Natonally, electncity consumption contunues to increase Between 1995 and 1999, the net electrictry suppled in the UK nereased from $317,000 \mathrm{GWh}$ to 345,000 GWh - an increase of almost 9% ln 1 ts recent Energy Paper [DTL, 2000c], the Government has prepared two possible energy scenarios for the future \ln the 'Low energy price' scenatio generaton increases from $345,000 \mathrm{GWh}$ in 2000 to $390,000 \mathrm{GWh}$ in 2010 In the 'Hugh encrgy price' scenario generaton increases form $343,000 \mathrm{GWh}$ in 2000 to $371,000 \mathrm{GWh}$ in 2010 (Both scenanos start from 1995 figures) These correspond to a total increase, over the 10 year pertiod, of 13% and 8% respectrvely - a signtficant merrease although less than that sten between 1995 and 1999

In the West Midardds regon, electracivv distabuted increased from $24,079 \mathrm{GWh}$ in 1994/5 to 26,114 GWh in 1998/9 [WMLGA, 1999] in line wnth the national trend In thus study, two different scenarios wwll be considered for electucity consumption by 2010 and these are indicated graphically in Figure 21

i) 'Energy Effictency'

In this scenario it 18 assumed that electicity consumpaon is mamtanned at 1998/9 levels 1e $26,114 \mathrm{GWh}$ Based on trends over the last 5 years thıs does not seem likelv, but is alrnost certainily achievable whth a determined programme of energ effictency measures in industry, business and the home The Climate Change Levy is one such inutative, with exemptons from the tax granted to industry and business only on the basss of some stingent energy saving measures
(u) 'Contanued Growth" In this scenario it is assumed that the growth in electricity demand contorues at a similar rate to that seen, both locally and natonally over the past 5 years, and reaches $30,000 \mathrm{GWh}$ bv 2010

These demand predicuons are compared with the exisung renewable electricty generation in the Regrion in 23 Meanwhule, it is interestung to note that the antucipated growth in electricity demand (scenato 1) exceeds 10%, and this hughlights the fact that renewable electncity generation must be seen in context of the 'bigger picture' Thas 'bigger picture' includes the fact that energy efficiency has an equally important role to play in reducing CO_{2} (and other) emussions Any tatget for tencuable energy is a mowing target and thus a signuficant quantity of new renewable capacty (dclivering about 120 GWh) will be needed an the next 10 years simply to mantand the present contribution of renewables to overall electricty supply The 'bigger picture' also includes the fact that electncty only accounted for 15% of inal energy consumption in 1999 (with petrolcum and natural gas 46% and 34% respectrvely) [DTI, 2000c]
2.3

231

Electucty Geheraing Phat

Rememable
Figure 2.2 and table 21 show all the known renewable electricity generators in the Region.

$-$

IN-1. Renewable Electacits Generaron Copacity in the West Midands

Techtiolugy	Location	NFFO	Operating Capacity (MW)	Planned Capacty (MW)
Landin Gas	Packirgton, Coventry Tutle Hull Warwickihtire Martley, Warwickshure Marte\%, Warwickshuze Rowlev Regers, Staffordshure Pachangtor, Coventry Rytom, Coventry Cannock, Staffordshire Telford, Shropshure Buddenhall, Coventry Tuttle Hell, Warmekshure Humley, Staffordshure Tuttle Hill, Warwickehme Pershore, Wioncestershure Rugbv, Wharwceshure Coventry, West Mdlands 'Tamworth Staffordshre Learnughton Spa, W/arwickshure Tamworth, Staffordshure Prees, Shropshire Bndgracth, Shropshure Shrewsbuty, Shrupther Telford, Shropshote Meaden, Coventry Meaden, Covenuy Eromsgrave, Worcestershure Pelsall. Walsall Stone, Scaffordshure TOTAL	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 270 \\ & 054 \\ & 027 \\ & 028 \\ & 200 \\ & 500 \\ & 0.85 \\ & 132 \\ & 139 \\ & 040 \\ & 116 \\ & 182 \\ & 273 \\ & 338 \\ & \\ & \\ & 093 \\ & 186 \\ & \\ & \hline \end{aligned}$	095 2.42 091 057 0.86 126 286 848 1211 091 078 3211
Waste	Corentry Wokechampcon, West Mullands Durley West Mudands Tyweley Burmunghan Stoke on Trent, Staffordshure Coventry Telford Coselev Kıddermunstes	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	8.43 8.35 620 2820 1250 636	$\begin{aligned} & 450 \\ & 178 \\ & 930 \\ & 1370 \\ & 3572 \end{aligned}$

Techaology	Lacation	NFFO	Operating Capacity (k W)	Planned Capacity (MW)
Seware Gas	Minworch, Burmungham	3	6.00	
Agricultural Readues	Redditch Wotcestrathite Telford, Shropshre TOTAL	$\begin{aligned} & 3 \\ & 4 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 200 \\ & 230 \end{aligned}$
Hydto	Obwesty O 5 westry Winshlll Pershore Tampronth TOTAL	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	012 036 007 055	$\begin{aligned} & 0.22 \\ & 009 \\ & 031 \end{aligned}$
Solar Photovoltacs	Falleng Park West Mudlands Bulston, West Midlands Burmungham Birmingham Reddttch Hereford Brmangharn Sandwell, West Bromwich Dudle\} TOTAL		0015 0015 0015 0015 0001 0003 0001 0007 0072	$\begin{aligned} & 001 \\ & 001 \end{aligned}$
TOTAL			9908	7051

Most of the data was obtained from records of contracts issued under the NonFossil Fuel Oblgaton (NFFO) The 'round' under which a contract was awarded, has been indicated where appropriate This gives an idea of the date, wth NFFO 1 beginning in 1992 and the last order (NFFO-5) being issued in 1998 A number of plants with a NFFO contract have yet to be built or commssioned This may be due to a number of reasons such as dufficulty in obtainung plannug permission or finance It is likely that some prill never become operational but for the purposes of this study such genetators are listed as 'planned capacity'

Regardng solar photovoltanc systems, because of theur size and dispersed nature it is very difficult to keep a record of what has been installed They do not contribute, at present, noticeably to the tegon's generation capacity and the list bere 18 indicative only The larger schemes (15 kW) have been installed on petrol statons as part of BP's 'Sunflower' project The 10 kW planned accounts for profects that have recelved a contract under the DTT's Domestc Field 'Toal and should be installed during 2001

A summary has betri compled in Table 22

Technology	Exıang capacity (MW)	Antual yneld (GWh)	Exisung and planned capacity (MW)
Landfill Gas	288	240	609
Waste	637	502	994
Other	66	50	92
Total	991	792	1696

From this a number of important ponnts can be drawn
(i) There is already 99 MW of tenewable generation in the Regron It is estumated that this produces atround 792 GWh per year or 3% of the Region's current electucsty demand This is slightly hughet than the natonal average (28% [DTI, 2000c])
(ii) If all the 'planned' capacity becomes operatonal then this will provide a total of 170 MW of capacity and approximately 1310 GWh per year This accounts for 5.0% of the Regron's curcent electricity generation Consequently, the Government's target to generate 5% of electricitv from renewables by 2003 can be met on the basss of exasting and planned capactity if it all becomes operational and consumption does not mincrease in the next 3 years
(iii) Almost all the tenewable genetation in the Region 18 accounted for by fust two technologies landfill gas (29\%) and enetgy-from-waste (64\%) Most of the recrainder is generated from a single sewage gas plant Thus is in contrast to the natoonal mix shown in Table 2.3 However, it is obvious that large hydro schemes ($>10 \mathrm{MW}$) wheh actount for over half of the renewables electricity generation on a natonal basis, will be inapproptiate for the West Midands region

1.b-LRenerabie Electucity Generation Capacisy in the UK [DTI, 2000c]

Technology	Capacity (MW)
Wind	151
Hydro	
small scale	64
Large scale	1413
Landfill Gas	309
Sewage Sludge	91
Wrastes	$\mathbf{1 5 9}$
Other Bofuels	84
TOTAL	$\mathbf{2 2 7 1}$

Conyminal
A list of non-renewable generation in the Region 18 indicated in Table 24 for compatton

L- E Conventional Electority Genctation Capacity in the West Midlands

High Wind	Preducted Generation Mix Consumpton Scenano			Deliverable Resource		
				Total	As UK M1x	
	Growth		rgy		Growth	Etretgy
	Continued GWh		h		Contonued	Efficient
Onshore Wind	26\%	780	679	1,345	780	679
Energy Crops	3\%	90	78	67	67	67
Waste	13\%	390	339	282	282	282
Landfill gas	13\%	390	339	398	390	339
Other biomiass	3\%	90	78	95	90	78
Other	3\%	90	78	11	11	11
Small hydro	1\%	30	26	4	4	4
subtotal	62\%	1,860	1,619	2,201	1,624	1,461
Offshore Wind	18\%	540	470	0	0	0
Exisang	20\%	600	522	792	792	792
Total	100\%	3,000	2,611	2,993	2,416	2,252
					B 1\%	86\%

The data in Table 24 was compled from thite different sources the DTI Energy Report [DTI, 1999b], the Electuciry assoctatuon [EA, 2000]], and Natonal Grid Company's 7 Year Statement [NGC, 2000]. Where there was a confluct between these references the figure has been indicated in bold italics and an average calculated Note also that the Table indicates installed capacity and not operating capacity It is understood that some of these power stabons may not be operang at full capacity but this information is difficult to obtain since it of a commercial rather than purely statistical nature

Of the 3112 MW of 'conventonal' capacity, 102 MW is 'embedded' 1 e connected whithin the distribution network rather than directiy to the natonal grid. This 15 roughly equivalent to the total renewable capacity which, without exception, will also be embedded. However, it ss thought that some small generators have not been included in the references used for Table 24 The significance of embedded generation is discussed in Chapter 6 .

The total capacity in the West Midlands (conventronal and cenewable) is 3211 MW Thes is approximately 4% of the UK's total capacity ($75,305 \mathrm{MW}$ DDT1, 2000c])

3 Renewable Generation Technologies

Introduction
The definition of renewable energy in its broadest sente is often given as those " sources of energy which are continuously and sustanable available the our environment " [DTL, 1999c] This defintion mannly encompasses sources of energy that are ultumately derved from sunlight Thus contrasts which fossil fuels, Which although their enecgy content is also derived from the sun, our use of is unsustanable - Ie they are being used up at a rate in excess to the rate at which they are being formed There are also other reasons for mintmising the use of fossil fuels their combustion adds to the total carbon dioxide concentration of the atmosphere and subsequent potential climate change. Adduonally, local aur pollution effects can have ditect shott and long health and ecosystem mpacts

Renewable energy technologres may provide energy in the form of phywal effort, hear, or electricity However, in the UK, the emphasis has been on the growth of technologres that can generate electricity as this is considered the key market that has the potental to use renewable resources on a mapot scale

An important aspect of renewable energy technologes is that as they depend on the natural environment and the dispersed energy flows withun it 'This is in marked contrast to fossil fuel energy which genetally is highly concentrated Thus the development of renewable energy can be expected to be at a telatively small scale and will need to be close to the resource itself The concept requies changes in the commercial framework and infrastructure that delivers electricity to consumets, as these are currently designed and operated with the am of transmutting electricity from large scale, remotely located, installations

Most renewable technologies can be used across a wide range of generaning capaciues This report will concentrate on the larger scale installations that have the abluty to contribute shgnificantly to achmevement of the 2010 target However, it is important not to lose sught of the potental of medum and small scale installations where appropriate Factors affecting take-up are considered in detal in later Sections, but some chatracteristucs of smaller urats are

- They may be economically ylable as generators for on site consumption, subsatuung retal price electricity, but not for external sale at wholesale prices
- They may be publicly arceptable at stes where large-scale installations are not. Thus is particularly true in envitonmentally sensituve areas and areas of high population density
- They may be operationally viable in more marginal natural conditons, and on stes where a CHP (combined heat and power) configuration may be attractive.
- Smaller technologes do generally require a higher level of capital investment per undt of installed capacitv

Therefore, it is important that tegional strateges do tor focus solely on large-scale development, but make appropriate provision for meduum and stmall systems

Selection of Technologries Sultmble Technologies for the West Midands
The physical nature of a countr\} or region dictates the renewable energy technologits that will be sutrable for electricty generaton in that locaton Thus, in the West Midlands technologyes that tap the signuficant enetgy resource at sea (odal, wave and offshore winds) are not approptate In addoon, the grological structure of the region is such that temperatures are not sufficiently elevated neat to the surface to allow the use of geothermal heat. Whulst parts of the Region do have significant ranffall totals, the landscape is generally low lyng, and thus not particularlv suted to large-scale hivdro electnc development

The basis for selecung the technologics to be considered ts thus based on an assessment of the realisue likelhood of their development using exisung or developing technology that will be commercially exploited by 2010

Technologres are thus limuted to those that use the following tesources

- Onshore wind,
- Biomass - consising of energy crops, wastes and residues,
- Solar energy, and
- Hydro electric

Each of these technologies is discussed in outhe detall in the sections that follow, where the particular types of resource they utrise are discussed and kej 1 ssues relating to ther explotation are explamed More detalls can be found on the relevant assumprions that have been made in esamatng the resoutce in Appendix A. For more technology specific information a good recent soutce is the 'Supporting Analysss' published for the Renewables Consultation undertaken by DTI in 19992000 [DTI, 1999\%]

Secton 37 summarses ths discussion and presents the theoretical electricity generation resource in the region

3.3
 Onshore Wind

Mankud has hamessed wind power for ower 2,000 years through the construction of wind devices or many types and sizes In modern wind turbines, electricity is generated from the wind by a moving air mass turning a shaft and hence generator) uthsing the aerodvname lift generated by the wing sectuons of turbine blades

Estmatang the energy avalable in the wind is a complex task and requires a knowledge of the long term wind speeds at height, taking into account climatic vanations, the effect of topoluycal features and ground fricton mpacts Although there is a cubic telatronship between the enetgy contaned in the wind and the wind speed, in reality the situation is more complex. Fot example, the blades of the turbine will be opomised to be most efficient at the wind speed that is most likely to be encountered However, in general terms the same turbine operating at a sute with an average rand speed of $8 \mathrm{~m} / \mathrm{s}$ will generate 80% more electriciry over the year than a site wth average wnin speeds of $6 \mathrm{~m} / \mathrm{s}$ As the capital and operating costs for these turbines would be broadly simular, the costs of the electucty generated will be correspondingly cheaper for the high wind speed site

Wind turbines for electricity generation are avalable in a wide range of sizes, from a few hundred watts up to 2 MW for onshore installations Typical turbine sizes for developments have been uncreasing rapidly over the last few years, with most developments in Europe favoung a few large (greater that 15 MW) turbines over many smaller turbines of a lesser capacity The very largest of these machues çan have towers of up to 80 m and rotor dameters of up to 80 m , giving a total swept heght of up to 160 m above the ground More typucally machines can be expected to reach a total height of $80 \quad 120 \mathrm{~m}$ The net energy output of a typical 15 MW
machne would be around $39 \mathrm{GWh} / \mathrm{year}$ on a stte with an average wrind speed of $70 \mathrm{~m} / \mathrm{s}$

Although the maporty of the resource in the West Midands 15 expected to come from large-scale developments using turbines of the type described above, small scale schemes may be locally important. This is where small individual wind turbines generate electricity primarily for consumption at an individual dwelling of smiall business (such as a farm) or for indirect applications such as water pumping Turbines for this purpose may have a rotor dameter of approxumately one metre

These small wind turbines are avalable from a number of manufacturers which can be used in connectoon with an electricity transmission and distributon system (grid-connected systems), or in stand alone applications that are not connected to the ubilty grod Uses would primariv be in rural areas where the generation output could be used etther to supply the genetal electrical demands of the dwelling or business, or can be used to run specific electucal appleations Thus can often be of most use in remote parts of a farm where the cost of cables from a utilty power supply point could be prohibitive Typical applications are electric livestock fencung, water pumpung, lightung or any kund of small electronuc system needed to control or monitor temote equprnent, including securty systems

The most common stzes of these small wind generaturs are around 02 kW , although machunes typicilly of 2 kW or larger are also available Stand alone installations are commonly constructed in compunction whth storage battery capacity and it is thus factor that can make higher capacity installations uneconomic This is due to the high capital costs of batteries, which can be in the order of the cost of the wond turbane atself

Biomss

Bormass tesources ate defined as those that generally denve energy from the photosyntheac growth of plants For the purposes of this study biomass resources have been disided into two main groups

- Energy Crops

These are plant crops that are specifically grown for therr abllev to utilise photosynthesis to convert atmosphenc carbon unto therr vegetatuve matter When this matter is harvested it may be converted into usable energy and atmospheric carbon as part of a carbon cycle The man carbon emussion savings thus occur from the displacement of conventonally generated electricity, which utilises the stored carbon in fossul reserves, such as coal

- Organic Residues

Where plant material has been used as patt of another process or for another putpose (eg atumal feed of tumber production) often considerable quantities of organic catbon can remain in subsequent residues These may be conveniently dirided into two man forms, reflecting the range of treatment optrons available wet (such as anumal slurnes or sewage sludge) and dry (such as forestry residues or munucipal and commerctal wastes)

Whulst a ptoportion of the carbon in murucipal and commercial wastes 18 contaned in matenals such as plasacs, and hence dertved from fossal oils, evidence shows that the majonts of the energy content of these materals is deaved from bomass as paper, card and kutchen scraps [DTI, 1999d]

There is a certain controversy over this issue, wnth the European Commission specifically excluding energy denved from munucipal and commercial wastes from renewable energy targets for Europe [$\mathrm{EC}, 2000$] Thus is primarily due to the commercial structures and support that are available, as large scale hydro electric generation is glso excluded from these tatgets Thus, the UK Govemment has taken the New that these resources should be included, but they ate unlukely to gain additional financial support, or be included under the Renewables Obligation [DTI, 2000d]

Energy Crops
Whalst there are a wnde range of crops that can be grown as energy crops, only a few have been studed in detall in the UK Of these the followng have been selected as the most probabie for development in the West Midlands over the next decade

- Short Rotation Coppice (SRC)

Willow or poplar 18 grown as an energy ctop in a short rotation coppice system that has been adapted from tradurional coppice systems and is based atound a rotation of 2 to 4 vears The crop is established by planteng $15,000-20,000$ cuttrags per hectare and these are cut to ground level at one jeat of growth [Fotesty Commssion, 2000] The resulang plant sends up muluple shoots and these form the base of the coppuce The fuel is harvested mechanceally to ground level as wood chsp or whole sterns after a further 2-4 year's growth, which mamitant the plant in its most productuve phase

Current yelds for SRC, after the first three years of establishment, are in the region of $10-15$ dry tonnes per hectare per year However, crop mprovements are indicating that this vield may nise to 20 tonnes per hectate per yeat Forestry Commussion, 2000, DTI, 1999a]

- Miscanthus

Thus plant is a grass that belongs to a type of plant, deriving from tropucal regrons, that uthses a more efficent photosynthetic process (termed C4) than temperate regron plants for converang Light to organic carbon Thus the plants offet a very high yield potental However, the growing condurions requred include mild temperatures and high ranfall, and thus the crop ts likely to be more successful in the western parts of the West Midland Region Mazze is another C4 plant, and requites simular growing conditions

The plant is established bv the plantung of thzzomes, whech then shoot to give an annual ctop that can be harvested mecharucally using stmulat equipment to SRC One potental advantage of muscanthus as an energy crop is that it is harvested telatively dry during the winter, when plant moisture is relocated to the thizomes Thus feature has the potental of matchung energy generation to times of peak demand and thus avoidng storage costs

The yreld potental is considerably greater than for SRC, and 15 likely to be in the region of 15 to 30 tonnes per hectare per year [MAFF, 2000 ${ }^{2}$]

- Oll Seed Plants

Some crops, such as rape and linseed, produce a oul nich seed These oils may be processed to generate a 'boo-diesel' that can be used directly in boilers and internal combustion engnes However the liquid nature of this fuel is such that it 18 hughly prized as a transport fuel, and development of this crop for thus use is likely to predomunate

Organtic Restidues
For the puppose of this study wet organic tesidues are defined as andrial manure, food processing tesidues and sewage sludge with a dry matter content of not above 20\%
(i) Wer Organc Residues

The promary method by which energy mav be recovered is through anaerobic dygestion (AD) of the resıdues

AD is the fermentation of the otgante fraction in the residues, whuch generates a methane nch blogas Thus biogas typically conslsts of 65% methane and 35% carbon dioxide, and has a calontie value of approximately $25 \mathrm{MJ} / \mathrm{m}^{3}$ In normal processes about 50% of the carbon content of the residue is converted to brogas, with the remander forming a potental feralser product for land spreading In most modern $A D$ processes the action of prolonged temperature, which can be combined whth a pasteutisation stage, destroys many pathogens and weed seeds

The blogas can be used in a vancty of applications, with spatk Ignition reciprocating gas engmes the most common method of genetating electricty

- Anumal Manure

Aomal manure accumulates whenever anumals are held in open yards or housed indoors The three man sources of such slurnes that will be examuned in this study are from catte, pigs and poultry Dairy cattle are nomally only housed dunng the winter and at mulkng time, whist a significant proporton of beef cattle, pigs and poultry are housed all vear round Changes in agticultural practuce to reflect higher welfare standards are likelv to increase the total amount of manure for housed animals in addition to increasing the dry matter content due to the inclusion of bedding
materials The inctease in outdoor production of pigs and some poultry produtes will have the opposite effect, decreasing the quanuty of manutt collected

- Food Ptocessing Residues

Many rupes of food processing tesidues ate avalable for energy recovery, including vegetable and frut tejects and off-cuts, abattoir wastes and process industry residues, such as brewery granns Whulst some of these residues have alternative uses, most could be also used for energy tecovery Unfortunately, staustucs on the detals of these residues are not generally avalable as the level of these arring is often viewed as commercially confidental by the industry

- Sewage Sludge

It is estumated that the West Mudlands Region generates approximately 25 mullion tonnes (at 4\% dry matter) of sewage sludge per annum at wastewater treatment plants This is avalable for dyeseson, and many large wastewater treatment plants alteadv generate sewage gas in this way
(iv) Dry Residues

Dry residues in this study are those that are likely to have energy recovered from them by a thermal process, etther by combustion, gasification, or pytolys1s

- Agricultutal Residues

Straw is the most common dry agricultural residue that is unilised for energy recovery, and a substantal quantaty of straw in generated in the West Mudlands Region Howevet, straw 18 also highly prized as an animal bedding material and the proxirnity of a high density of animal ratsing farms umples a ready market for any excess straw in the regon

- Muncipal, Commercial and Industrial Wastes

Energy may be tecovered from manuepal, commetcal and industrial wastes by two primaty toutes thetmal teatment and anaerobie digestion The most common method is by the incineration of muxed wastes in a furnace with a moving inclined grate Energy is subsequently recovered by steam cycle generatng plant This 'mass bum' technology is well established and in widespread use world wide Research and development contanues to easure that emissions from such processes meet uncreasing demands for better aur quality A number of alternatuve approaches are under development, such as gastication and pyrolvsis, whech offer the expectanons of economuc plant at smaller scales

Anactobic dyestion of the organic matter in muntepal, commerctal and industral wastes carc convert approximately 50% of the organe matter in the waste to methane for energy recovery This can take place as a controlled reaction in a digester vessel or in the uncontrolled envitonment of a landfill site

- Forestry Wastes

Thunring and harvestug of commercial forestry crops leaves a considerable quantity of matealal as brash on the forest floor. Whilst this represents a sigmificant energy tesource, the difficulates of extraction of such a low value product have been a barmer to the undisation of this material

Run of the Ruver
In this case existung sluices and wemb or open flowing water are used to turn small turbine devices of many dufferent types These ate typicalls in the range of 25 kW to 1 MW capacity In general the environmental effects ate small and unlikely to be a barrer to development

Starage Dams
The traditonally thought of Hy dro electuc scheme would include a large stotage dam and a generating capacity of many 10's, or even 100's of MW The relatively low lying terrann of most of the West Midlands allows lutle or no scope for such developments, even if the considerable environmental implications of such a development were acceptable

A smaller storage dam or teservoir could be used to generate electricity at peale demand (and hence peak puce) periods Typical generating capacty may be in the order of a few hundred kW Environmental implications of such a scheme would stll be locally important, as would the acceptance of a fluctuatng water level

Water Suppby Company Resources
The transfer of water to urban areas often relies on gravity, and may requite the installation of pressure reducing valves and pressure break tanks These represent a point at whech the potental energy in the water can be harnessed by small hydroelectuc installations However the topography of the region, with the main conurbation on a saddle in the landscape, does not lend itself to the wnde use of such a techruque There may be situations adjacent to hugh ground where this techrique could be used

Solar

There are two main ways in which solar energy may be directly undised for the generation of renewable electricty

- Solar Photovoltaic

The actoon of light falling on special matemals ditectly generates an electric voitage 'There are a number of different types of matertals as crystals and films that have thas effect, with possible future technology able to deltver up to 30% of the energy in the ight as electricity [Progress in Photovoltars, 2000] However, values for current commercral products are in the region of 6 to 15% range Thus a twpical panel of photovoltac matenal of around $1 \mathrm{~m}^{2}$ would yieid in the region of 150 W as a peak output in the West Midlands

- Solar Thermal

In countries with frequently clear skies it is possible to concentrate the incident sunlight by the use of mutrors and concentrators to generate steam for the direct generation of electricity in steam cycle plant

However, thus is not an opton in the UK, and solat thermal would only contribute to renewable electncty supply by displacing electncity utelsed for water heatug

3.7
 Theoreticel Resource for the West Mid/nnds

Bv undertalang a number of calculatons based on assumptoons (detaled in Appendix A) that reflect the techrucal potential of technolognes to deliver rencwable electrictry it is possible to calculate an estomate of the 'theoretical' resourte for the West Mullands Thus resource is set out in T'able 31 below and illustrates that there ate sufficent renewable resources to deliver eight times the preaticted 2010 electraity tonsumpron

LILI I 1 ewable Electri=_ Resource for the West Mudlands

Resoune	Technotogy	$\begin{gathered} \text { Annual generation } \\ G W b \end{gathered}$
Wind	Large wind turbines Small wind turbines	$\begin{array}{r} 225,482 \\ 2 \end{array}$
Bıomass	Enetgy crops Agricultural residues Forestry residues Wastes Sewage gas Landfill gas	$\begin{array}{r} 1,727 \\ 421 \\ 92 \\ 4,504 \\ 107 \\ 1,018 \end{array}$
Solar	Photovoltacs	2,249
Hydro electric	Run of the aver	11
TOTAL		235,613
Renewable Electricity Resource as \% of estimated 2010 consumption		785\%
ESTIMATED 2010 CONSUMPTION		30,000

Introduction

The Government's target to genctate 10% of the UK^{\prime} 's electricty requrements from tenewable sources by 2010 is subject to the cost to consumets being acceptable Thus, although Govemment polity does not pteclude support for renewables as they seeh to penetrate the electricaty matket, customers will be protected aganst excessive price rises While the questron of what prite is acceptable to the customer is open to debate it is clear that renewable technologies most attan a near fossl fuel pnice if they are to be commercial.

As in all markets, whether or not a product (in this case electricity) is economac 18 determined by the cost of production and the commercal framework within which that product is benng sold. With tegard to the latter thete ate cuttently thee major changes underway in the UK.

The first is, the introduction of the Renewables Obligation on supplers (as a replacement for the Non-Foss1] Fuel Obligation) and the second the commencement of the New Electocity Tradng Arrangements (NETA) Whale NETA, unlike the Renewables Obligation, is not explictly part of the Government's renewable energy policy, both will have a profound influence oti the development of renewable energy in the UK The legal framework for both was set by the Uthaes Act 2000 , although only NETA has been implemented to date whth the Renewables Obligation now planned to start in the spung of 2002.

The thurd antuative in the introducton of the Climate Change Levy, antroduced in April 2001 This levy is an additional charge that must be placed on electricity sales to business energy users Howevet, supplets of electnaty that derive solely from renewable sources (except for large hydro-electre schemes) ate able to exempt these sales from the levy This measure is designed to enhance the salue of renewable electricity agaunst that provided from fossil fuel sources

The purpose of this chapter is to assess firsty, which tenewable energy technologres are likely to be cost compeatuve in the next 10 years under the proposed legislative framework and, secondly, where these technologies will be viable in the West Midlands This reseatch is then used as the basis for the calculation of the economic resource in Appendix A. By nature, the economic analysis must be speculative since the details of the Renewables Oblogatoon have not yet been agreed and the response of the market to NETA has been uncentan in its early stages and is now under review However, thete is sufficient evidence to preduct with a reasonable degree of certanty, the rype of development that is likely to be seen and hence the econominally accessible tesource

The commercial framework and then the cost of generation are reviewed sepatately (42 and 43) before betng brought together to produce a summary of the prospects for each technology in the new market place (44)

Commercsal Framework

The last round of the Non Fossil Fuel Obligation (NFFO) was 1ssued in 1998 and it 18 now due to be superseded by the Renewables Obligation However, there are still a large number of projects contracted but not yet commussioned These are likely to account for the mapority of the renewable generation installed in the next two years and it 15 for this reason that a brjef resume of the NFFO process is provided below. This is followed by a review of the key features of the Renewables Obligation and NETA in order to permit an estumate to be made of the price that renewable technologies are likely to command in the new market place

The Non Foss/ Fue/ Obkgation

The Government introduced the Non Fossil Fuel Obligation (NFFO) 111 England and Wales under the 1989 Electrcity Act, together with simulat Oblegations in Scotland and Northern Ireland

The NFFO required electricty supply compantes to secure a specified amount of new generating capacity from non-fossil spurces, including renewables, and guaranteed a premium price for this electucty for a set period of ame It operated through a senes of 'orders' or 'rounds' of which the 5th and final Order was assued in 1998 The Secretary of State was responsible for 1 ssuing an Order and the NonFossil Purchasing Agency then mvited bids for prospectave schemes from renewable generators In each order different technologes were idenafied in bands, in such a way that projects in each technology area were compeong
together for a supply contract. Subsequently, the technucal, economic and legal aspects of the tenders were then assessed and finally the cheapest schemes selected to secture the required capacity within each band

Adduonal costs incurred by the electratity supplers under these contrates, compared with the cost of 'conventionally' generated electricity, wete financed through a tax on electucity (the Fossil Fuel Levy) This Levy was ulumately funded from all electncity consumers and decreased in value over tume Between January and Seprember 1999 it was set at 07% of the electriciry price
'The NFFO 'kick started' the renewable energy industry in the UK by providng secure, fixed term (up to $\mathbf{1 5}$ year) contracts for a varlety of technologies in different technolog bands The contracts enabled developers to obtan finance and thete was an explosion of new entrants into the newly ptivatised electucty sector However, the NFFO process did not talse into account the planning systems Contracts were awarded for specific projects in specific, non transferable locatons Furthermore, because contracts were awarded on a fiercely competave basss, developers went to locations where there was the greatest concentration of respurce in order to drive down costs and stand the greatest chance of winning contracts In the case of wind and hydro this meant that many projects were proposed in remote locatons which were prized for theit unspoilt chatacter Consequenty, of the in excess of 3000 MW of contacts awarded, less than a quacter have so far been physically delivered ${ }^{3}$

The Renwables Oblagathon
Followng a change of Government, an alternative support mecharusm for tencwables was sought to teplace the NFFO The Government wished to continue to develop renewables within the framework of a compentave matket but to remove the exastung levy on fossil fuel that underpinted the NFFO system This was because the Levy was classified as a tax. Following public consultaton, the Government published its conclusions in February 2000 [DTI, 2000a]

[^2]In this polscy document the Government confirmed its intention to replace the NFFO by a legal obligation on supplers to obtann a certarn percentage of their electricity from renewable sources, which would be backed up by a 'buy our' pnce for non-complance to protect consumers aganst excessive pnce rises To prevent the Obligation being classfified as a tax, and to gave supphers an added incentave to purchase electricty from renewable sources, all recelpts from supplers "buying out' of theit obligation would be recycled to supplers

Two further consultation ducuments, devoted specfically to the proposed Renewables Obligation, were published by the DTI in October 2000 [DTL, 2000 d] and August 2001 [DTI, 2001] The key features, pertinent to the finanong of renewable energy development, are highlighted below
(i) Inellgble Technologies

Exisung large scale hydro and energy from the fossil portoon of wastes are included in the 10% target for renewable electricity supply, but are curtently excluded from the Obligaton The basss of this is that, according to the Government, 'they ate already commetctally viable, well establshed in the market and can compete with electricty from fossal fucls' (sec Table 41)
(ii) No Technology Bands

Unlike the NFFO, there will be no technology bands The Government has chosen to adopt a market led approach whereby supptiers will meet their Oblgation by the most economic means on the presumption that they (the Govetrment) 'do not wish to 'puck wnneers' amongst the different technologies but rather let compenuwe forces shape the industry'4 Whule the 'winners' depends largely on the level of the buw-out price (see iv) it clearly imphes that technologies such as photovoltars and wave power will not play a signficant role under the Oblgazton They will continue to be supported under the $\mathrm{R} \& \mathrm{D}$ programme untll such ume as they are commercially viable

[^3](iii) Capital Grants

Capital grants will be avaulable for two specific technologes offshore wind and energy crops This is justufied on the basis that a) a signuficant contmbution from these technologies will be necessary if the Govemment is to acheve its target and b) these technologies are almost commercial but tequre assistance in bndging the gap between $R \& D$ and commercial deployment. Grants of up to 40% of eligible costs will be awarded on the basts of the lowest cost per MW capacity installed Elgible costs are defined as the cost over and above that of building a combined cycle gas turbine power station
(iv) Buy Out Pace

In order to protect consumers from excessive pace rises the Obligation sets a buy out pnce This has been provisionally set at $30 \mathrm{p} / \mathrm{kWh}$ to be linked to the Retall Price Indes) The level of the buy-out price is puvotal to the success of the Obligation If electricity from renewable sources can be developed below thus (see section 42 4) then $1 t$ vill be cheaper for the suppler to buy renewable electricity rather than buyng non-renewable electucity in the marhet and paying the buy out price The Govemment belueves that a price of $30 \mathrm{p} / \mathrm{kWh}$ will struke the best balance between the probabilutv of meetung the 10% target with associated environmental benefit and an acceptable level of additional cost to the consumer The Govemment estimates it will tesult in a maximum increase in electncity prices of 37% by 2010 (relative to 1998 prices) However, it must be stressed that these figures tepresent an estmate of the effects of the obligation, and are currently subject to much debate
(v) Profile of the Obligation

The percentage of sales that must be denved from renewable generated electricty will be staggered, increasing from 30% in $2002 / 2003$ to 104% b) $2010 / 2011$ (currently, on a natronal basis, 28% of electricrty is generated from renewable sources)

The scope of the Government's proposed supprit fot tenewable technologes is set out in Table 41 Exclusion from the proposed Climate Change Levy, as mentoned previously, is also meluded as another 'strand' of the Govemment's renewable energy policy, although in fact it is being introduced to minimuse CO_{2} emussions cather than explicitly to promote renewables

Hil

Source	10% Target	Renewables Obligation	CCL Exemption	Capıtal Grants
Landfill Gas	\checkmark	\checkmark	\checkmark	
Sewage gas	\checkmark	\checkmark	\checkmark	
Encrgy from waste	\checkmark	\checkmark (non fossli)	\checkmark	
Hydro ($>20 \mathrm{MW}$)	\checkmark	\checkmark (new only)		
Hydro (<20 MW)	\checkmark	\checkmark	\checkmark	
Onshore wind	\checkmark	\checkmark	\checkmark	
Offshore wnd	\checkmark	\checkmark	\checkmark	\checkmark
Agraultaral \& forestry residues	\checkmark	\checkmark	\checkmark	
Energy crops	\checkmark	\checkmark	\checkmark	\checkmark
Wave power	\checkmark	\checkmark	\checkmark	
Phorovoltalcs	\checkmark	\checkmark	\checkmark	

The Naw Elecinaty Trading Amangements
Under NFFO, the prices bdd per unt of electricity by renewable generators were (assumang they were successful) the prices they were pard Under the new attangements, renewable generators will be exposed to market forces and prices The New Electrictity Trading Arrangements whuch replaced the Electncity 'Pool' have affected renewable generatots as much as (if not more than) generation from conventornal sources

Under NETA, electricity is traded in a way that is more like commodity trading with electricity sold in advance through bilateral contracts between generators and suppliers Generators and suppliers take out sufficsent contacts to cover their ptojected outputs and off-takes in each $1 / 2$ hour trading penod At the end of each trading period, every party's actual metered output/off take is measured agannst its notied contracts and anv party that has over or under shot its contracted amounts Is 'out of balance' and has to settle its imbalance in the Balancing Mechatusm

It is not appropriate or necessary here to desctube the full detalls of NETA, but mintead to highlight the implications for renewable generators Although concidental, tather than dellberate poluctes for or aganst renewable energy, there are likely to be a number of consequences
(1) Trading Direct to Supplers

It is hughly unlikely that tenewable generators, simply because of their size, will have access to the spot matket and the opportunutes that may afford They wrll therefore be forced to sell directly to suppliers One result of this is that independent generators are unlikely to see the full value of the buy out puce as they will need to offer some discount or incentave to supplers to purchase ceruficates instead
(ii) Penalues for Vanable Generation

Pricing in the Balancing Mechansm 18 ancertann and penal It 1 designed to force partles to actually generate/take what they say they will generate/take This should have little effect on energy from waste, landfill gas and buomass technologes, as these ate all reasonably predactable forms of generaton However, wind generation will be largely unpredictable within the tume frames requred for the Balancing Mechanism and may suffer severe imbalances
(iu) Shorter Contract Periods
Under NFFO, gencrators wete given contracts for up to 15 jears, recenving the final bid proce (index linked) for each kWh generated NETA is likely to produce much shorter contract periods It is estumated/ antucupated that contracts between supplers and generators will be no longer than 10 years This will affect the renewable energy technologes in different ways depending on the extent to which thev are capital intensive [D Milborrow, 2000] Energy from waste projects are the most capital Intensive and therefore will be most affected, whith estmates indicanng that electricity preces may need to be calsed by up to 50% if contract lengths are reduced to 10 years Sumilarly, wind generators and land fill gas may need to increase prices by around 20% and 15% respectavely
(iv) Increased Market Rusk

The cost of finance for projects is lukely to be tugher to reflect the increased uncertainty and risk. The increase in rask perceived by financiers is a result of both the every day pricing under NETA and political decisions concerning, in the neat term, exemptons from the Clinnate Change Levy and, in the longer tem, possible changes to the Obligation if thete was to be a change in Govenment Hugher discount rates will again have a greater impact on capital intensise projects such as energy from waste and wind

Remewable Eners, Praces

Together, NETA and the Renewables Obligation will determine both the pnce of electricity generated from renewable sources and the financial viablity of such projects The final electricity price that is likely to be acheved for tenewable generation is calculated below (Table 42) followed by some explanatory notes on each price component. For the purposes of thus calculation, generaton has been grouped into 3 classes
(a) Biomass (energy crops, agricultural residues, forestry residues, landill gas, sewage gas)
(b) Wind, hydro
(c) Energy from waste

Fiarthermore, a distuction has been drawn between independent and suppler tied gencrators Independent generators are defined here as not tod in any way to a company that holds an electricity supply licence or which owns genctating assets previously held by the CEGB

1iliail Estumates of Rencwable Energy Prices an the New Market Place, in pence/kwh

	Independent generator			Supplier tied -generator		
Price element	a	b	c	a	b	c
Baseload electucity pnce	18-20	18-20	18-20	18-20	18-20	18-20
LEC value	$02-04$	02-04	02-04	0.4	04	04
ROC value	1.5-21	1521		3	3	-
Embedded generatoon benefit	0	0	0	0	0	0
Penalues for vatable generation	0	$\begin{aligned} & 03 \\ & 05 \end{aligned}$	0	0	-03-05	0
Total	3.5-4 5	3.0-42	20-2.4	5.2-5.4	4.7-5.1	2.2-24

Explanatory notes

(i) Base Electricty Price

Projectans [DT1, 2000d] indicate that the value of electricity is likely to be between 18 and $20 \mathrm{p} / \mathrm{kW}$ in $2002 / 2003$ (the first year of the Obligaton)
(ii) Levy Exempton Certuficate (LEC) Value

The Climate Change Levy on electracty sales will be set at $043 \mathrm{p} / \mathrm{kWh}$ for non domestic customers Renewable electraty generators will compete aganst electucsty on whuch the Levy has been placed, so in theory renewable energy generators should be able to reallse hugher puces However industry, feang that the Levy will make them uncompetrive in comparison with other countries, is carnpagnong hard for exemptions and the Government has already made a nurnber of concessions The average value of the levy placed on base load electricity could therefore drop to 50% or lower of the levy tate
(iil) Renewable Oblugation Certficate (ROC) Value ${ }^{5}$
'The value of the certficates will be determuned by the 'buy out price', which the Government propose to set at $30 \mathrm{p} / \mathrm{kWh}$ Generators tued to supphers will value their certficates at the same level as the buy out price, as thert certficates will be ditectly teplacing thss cap However, independent generators may see a lower valuc than the burs out price as they will need to offer some discount or incentive to supplers (to purchase cernficates rather than sumply pay the cap) The size of the discount will be dependent on the avalability of certuficates in relanon to the size of the Oblgation. It has been esumated here that independent generatots will only recelve $50-70 \%$ of the ROC value, although thus is of widesptead debate

[^4](iv) Embedded Generation Beneffits

Embedded gencraton 18 generaton that 18 directlv connected to the distabution network, and is likely to represent the majonty of renewable genetation projects The principle that small embedded generators can be beneficial to the distribution (and even transmassion) network has been established However, there are a number of problems to realising these benefits, which will sary both regionally and localls Since at present there is no framework for networh operators to reward embedded generators this is not being included in the current calculations although the situation may change in the future This issue is discussed further in Chapter 6
(v) Penaltues for Vanable Generaton Most renewable generators are unlicensed and therefore will not be compulsomly exposed to the Balancing Mechansm. However, as most are too small to trade directly themselves, they will need to deal with a licensed supplier, ot 'consolidator', who will then pass back some, or all, of the imbalance charges to them Renewable generation, such as wind, whll be largely unpredictable within the tume frames requred for the Balancing Mechanism and this could reduce income by between $03-05 \mathrm{p} /$ liWh

Table 42 gives an inducation of the target that generatons must seek to achueve These are, for independent generators, of a simular order to the prices achueved under NFFO (Table 4 3) However, as It was noted in 423 , there is one crucial difference - prices in the new market place must be achseved on the back of short term contracts with higher rates of retutri expected Thus the price onlv indicates half of the story and there is a real nisk that many developers will not be able to secure finance in a post NFFO envitonment

It must be stressed that the pnces indicated in 43 are those achieved in the bidding round, not those of operating projects

Table 4.3: _Convergence of Pnces Under NFFQ

	Weighted average price ${ }^{1}$			Highent price
	NFFO3 (p/kWh)	NFFO4 (p/kWh)	NFFO5 (p/kWh)	
Hydro (brall-scale)	446	425	408	435
Landfill Gas	376	301	2.73	29
Municipal and industrial waste	384	275	243	249
Wind energy - small ${ }^{2}$	529	457	418	46
Wand energy - large				

1 Average price to be pald, weighted according to the expected output from each project, as of $30 / 06 / 00$ Note that many of these projects will not have been financially vable at thus pnce, and thus will not be developed
${ }^{2} \mathrm{NFFO} 3<16 \mathrm{MW}, \mathrm{NFFO} 4<0768 \mathrm{MW}, \mathrm{NFFO} 5<0995 \mathrm{MW}$
$3 \mathrm{NFFO} 3>16 \mathrm{MW}, \mathrm{NFFO} 4>0768 \mathrm{MW}, \mathrm{NFFO} 5>0995 \mathrm{MW}$
4 Not included as a technology for NFFO 5

Ftnametang Rentenables

The abulty to obtan finance depends uporn a number of factors, including the size of the project, the type of developer and the market ask

Broadly speakung project finance is only likely to be an option for projects over f 10 milion (equating to roughly a 10 MW generator) Below this projects are likely to be financed by commercial debt secured via smaller banks or cooperatives or, depending on the nature of the developer, on the strength of the developer's own balance shect

It is appropniate at this point to consider who the developet Is Commercial developers are unlikely to be interested in profects with a capital value less than fl mullion and will be looking for high tates of retum corresponding with their percepton of market risk. A second class of developers can broadly be defined as those seekng to explolt a renewable energy resource as part of a wider strateg; Examples could range from bulding a brogas plant as part of a waste management strategy on a farmb, to harnessing energy crops as part of a tural diversification strategy Finally, third group of developers exusts for mucro-generatoon such as PV or small wind or small hydro - projects that are lakely to be developed for
environmental reasons or (possibly) because they sumply represent the cheapest opton for an application that is not connected to the grid

Large projects such as whind farms, energy from waste plants and landfill gas generators are likely to be financed by banks or, in the case of the latter two, by the waste managernent company thernselves (who may then lease the plant once $1 t 2$ is up and running) However, thus leaves a signuficant fraction of the renewable energl industry - lowking to develop projects below say 5 MW who will find st difficult to attract firante Micto-hydro, biogas, energy crops, agricultural and forestry tesidues may be economically viable but smply not large enough to attract the attention of a commercial developer and too expensive for 2 home-ownet or farmer to secure a loan for

Financing renewables will be considerably harder in the absence of long term secure NFFO contracts Developets are unlikely to be able to secure more than 10 yeat contracts, resultang in considerably higher repavments ${ }^{6}$ Additonally, in the lght of NETAA, financiers mav percelve their income subject to increased market nisk

4.3

Prospects for Indivdual Technologres

A detaled economic analysis of the varrous tenewable energy technologres was published by the DTI alongside its new renewable energ; policy [DTL, 1999a] Whule it 18 not wished to tepeat the signuficant amount of work that has already been done in this area, a brief commentary on each technology is provided here to provide the foundations for 2n assessment of the econornc resource in each case the cost of electuaty genetated is determined by the efficiency of the energy conversion technology, offset by the capitai, operational and mantenance costs of the plant

[^5]It is worth noung two points Firstly, that 'micto' technologies in paraculat (PV, small wind and small hydto) are andikely to be assessed purely on the basis of ther payback perrod Secondly, it is important to draw a distncton between technologres such as wind and hydro where the economies are strongly detemmed by the phystcal attributes of the site and technologres such as PV, energy crops and orgaruc residues where an economic assessment is not (generally) site specific. Thes has important implicatons from a plannug pornt of vew since the latter allow a much greater degree of flexubluty when incorporating renewables in a strategic planning polics

Wind (Large-Scale)

The economic viablity of a turbine is strongly dependent on the wind speed since the power is propormonal to the wind speed cubed ${ }^{7}$ The BWEA in their analysis [BWEA, 2000] state It has been assumed that $70 \mathrm{~m} / \mathrm{s}$ at 45 m height reptesents the lower limut of commercial viabilty for wind power in the UK in the expected economic condanons between 2000 and 2010 Athough local circumstances and umprovements in the technology may allow some propects to be constructed in areas with and speeds below $7 \mathrm{~m} / \mathrm{s}$, these are not expected to sigulicantly affect the total capacity ${ }^{\prime}$

The BWEA calculate that the cost of electricity, in the minimum wind speed band, will be $45 \mathrm{p} / \mathrm{LW}$ Wh using a discount rate of 10% and 'typical industry data for captal costs ${ }^{*}$

According to our analysis (Table 4 2), it will be difficult for independent generators to acheve this at the ptesent ome, although it seems realistuc to assume that the cost of generation will drop further The DTI analysis predicts that capital costs (which typically account for 75% to 90% of the total cost of a wind farm) will decrease to 75% of 1996 costs by 2010 based on recent trends

[^6]In most instances diesel generators are used for small power generation on fatms where a connectoon to the grid is not avallable The economic resoutce can therefore be calculated from a comparison with the cost of desel genematon For diesel generators the fuel and operanng costs are estumated to be approxamately 7 $\mathrm{p} / \mathrm{kWh}$ The difference in capital cost for a 200 W wind generator, as opposed to diesel is around f_{500} If the wind generator has an average load factor of 025 then it can be expected to produce 438 kWh of electncity per year, thus saving $£ 30$ on fuel and operatng costs Thas results an a payback penod greater than 15 years Although only a 'ballpark' calculaton it is assumed that none of the theoretrcal resoutce will be economic, especially considemig that whind generators are twpically sold with fust a 2 year wattanty There is probably scope for a large reduction in costs if small wind turbines were to be mass-produced but thus as difficult to foresee

Emergy Crops

Britsh Biogen estamate that the cost of electricity generated from energy crops is between 55-6p/kWh [Britash Biogen, 2000]

Table 44 Estumate of Gencrating Cost for Finergy Crops

Elements of come	Cost $(\mathrm{p} / \mathrm{kWh})$
Capital	$20-25$
Operations	10
Fuel	25
Tocal	$5.5-6.0$

Although this is higher than prices molucated in Table 42 , capital grants are available fot a limited number of schemes and the fuel cost should be reduced by the Govemment's Energy Crops Scheme. Thas will offer plantung grants of between $£ 920$ and $f 1,600$ per acte wath the amm of delivening $20-25,000 \mathrm{ha}$ of enetgy crops by 2007 MAFF, 2000b]

Even so, the dufference between cost and price is marginal and it seems safe to assume that the economuc resoutce wll be defined by those ateas covered by both the MAFF planting grants and the capital grants for the energy conversion plant itself

Agroultural Restides
A tecent detalied investugation of the economucs of boogas plant in England [Cannungton College, 1998] indicated that the anaerobic digeston of animal manure is likely only to be commercially economic if a substantial quantre of food processing residues are also av altable This is because the disposal costs for these residues can be recerved as a gate fee at the biogas installation In this case a generatuon cost of under $45 \mathrm{p} / \mathrm{kWh}$ may well be achuevable However, the scale of facinties that are mnstalled has a signuicant effect on the cost of generation, with one study in 1996 puttong the generation cost for small farm scale plant as high as $59 \mathrm{p} / \mathrm{kWh}$ [ETSU, 1996a]

Thus it can be assumed that, in absence of any drect government support, that the only propects that will be cconomic bv 2010 are those that will be able to attract food processing on other organic residues for a substantal patt of their through put This will therefore favour centralised AD plant Typically this will include a net generation capactey of over $1 \mathrm{MW}_{e}$ and will source manure from $40-60$ farms wattun a 5 km cadrus of the facilty A facilty such as this would requre 15,000 to 20,000 tonnes of food processing residues annually to make it vaable

Foresty Restedues

Due to the diverse nature of tree surgery operations, it is assumed that these will not be sufficiently reliable for the development of forestry residue projects This reduces the quantrty of waste wood avatlable to that from commercial tree felling operatons and thus is estmated to amount to 020 dry tonnes per annum per hectare of woodland Subsequently it 18 undikely that forestry propects will be viable urless they contribute to a nearby energy crop project. In this circumstance all residues collected can expect to be used, as they can make a signuficant contubution to the economic vability of these projects by providng addrional low cost resource

Energy from Waste

Energy from waste plant is capital intensive plant, and requires a guaranteed waste debvery for full operation. Thus it is assumed that the only plant that will be developed will serve only the domestic sector, as it is in this area that long term waste management contracts are awalable (up to 20 years) The Government is also propostrg that electricty generated from energ3 from mused waste projects will not be cligible under the Renewables Obligation on the basss that thus technology (like existing latge hydro electric schernes) is mature and commercial at base load electucity prices Thus 15 |usutifed by the fact that the revenue from
electricty sales for an energy from waste project is likely to onlk contubute in the order of a thard of the total revenue for the profect, whth the remander benng ralsed from gate fees for waste disposal

437

438

Landfill Gas

Whist landill gas offers some of the lowest pnced renewable energy avalable, installations are generally only effectuve if there size of the site 15 above a certan level. Thus is partlv due to the economucs of the grid connection, and partly due to the difficultes of ptoviding effectuve anaerobic (without oxygen) environments at smaller sites The size of site held to be as economuc has decreased from approximately $1,000,000$ tonnes of waste capanty to 500,000 tonnes in recent years [DETR, 2000c]

Sewage Gas

Sewage gas was removed from the NFFO process after round 2, on the bass that it had reached, in the eyes of the Government, a fully commercial status

Currently it has only proved economic to installed araerobic digeston facilutues at sewage works that serve major utban areas with poplatons of over 80,000 100,000 Thus is a situation that is considered undikely to change.

Solar (Photovosianc)

Whilst there is evdence that PV is a cost effective option for some small off grid applicanons and there is a large world market for such systems, the opporturntues ate limuted in the UK Thus only bulding mounted, gnd connected ssstems are consideted in this study For such PV systerns the cost of electracify generaton is currently $>50 \mathrm{p} / \mathrm{kWh}$ Thus is unlikely to be reduced to below $5 \mathrm{p} / \mathrm{kWh}$ in the foreseeable future and thus will not feature under the framework of the Renewables Obligation

However, PV Is fundamentally different to all other forms of electencty gencration in that it can be installed within the built environment (ie at the point of demand) and, furthernore, can be used mstead of conventional building maternals Under the present pricing structure this embedded generation benefit is not realised in economuc terms, although there are moves to introduce 'net meterng'\$ for PV

[^7]systems In regard to the latter it is more appropriate to calculate the cost of a PV systems in ℓ / m^{2} and to then offset the cost of alternative construction materals When PV is calculated in thus way, as opposed to $\mathrm{p} / \mathrm{kWh}$ generated, it mav be economic in certan situations

A recent study [ETSU, 1998b] to determine the value of electrcty generated from PV systems un buldings examıned 5 case studies a new buld office, office refurbishment, a superstore, a new-buld domesuc dwelling and a prestige public building. The study compared the cost of a PV system with conventional cladding in each case For curtan wallung (say for a new office building) the PV system cost of $\ell^{784} / \mathrm{m}^{2}$ compares to $£ 300 / \mathrm{m}^{2}$ \{stone), $\mathrm{f}^{2} 420 / \mathrm{m}^{2}$ (ghazing), $£ 640 / \mathrm{m}^{2}$ (granute faced precast concrete) The study concluded" "Where PV replaces high cost, prestige claddrng the PV electriciry generation will become cost-effectuve in the short to medum term (after 2005) under all market development scenanos a more supportive polacy framework is in place, PV-nategrated buildings are expected to become a commercal reality by 2010" The market for 'prestypous' wall claddrggs fot new or refurbished offices is taken as the economic tesource for PV between 2000 and 2010

4310

Hydro (Mtro/Small)

The econornc vabillty of hydro power generally increases wnth installed capacıty Thus in turn 18 determined by the product of design head and flow rate, which are both site specific factors.

A recent study for the Envitonment Agency [Environtment Agency, 1999] investigated the potental for hydro power in the Anglan Regrion 15 sites with 2 head greater than 17 m were surveyed and the 5 most attractave sites selected for a more detaled econoruc analyss The results are presented below
the full use of system charge Where PV generated electnaty can be used in the buiding it is drsplacing electacity purchased from a suppler at $\sim 7 \mathrm{p} / \mathrm{kWb}$ Hence under the exlating commercial framework there is a large incentive to manumse the export to the grd Net meterng' is a stuation wheteby the price pard for ant exported kWh is equal to the cost of an mported kWhie the owner only pays for the net electrctry mported TXU Europe are the first (and currently only) utlaty to introduce net meterng in the UK but it has been widely implemented in a number of countries such as the US Although tet meterng will not dramatcall affect the economics of a PV system, introducton on a wider scale would provide a strong poltucal statement and may add mpenus to the growth of the small scale PV market in the UK

Table 4.5. Illustrarion of Costs for Micro-hydro

Site	Gros: head (m)	Installed power (1)	Total cost (as part of refutbishment) (f)	Tanif required ${ }^{\prime}$ (p/kWh)	Taniff required ${ }^{2}$ (p/kWh)	Captal cost/kW (${ }^{(1)}$
Castle Mills	28	72	140,000	415	329	1940
St Neots	237	61	132,000	428	338	2160
Elton	228	40	118,000	591	467	2950
Irthlingborough	234	34	112,000	745	590	3290
St Ives	178	44	129,0010	613	487	2930

I The Environment Agency set a critena of an IRR 6\% above inflation (which was 29% at the tume of the study) and a 20 year design life
220 years was thought to be a rather pessimuste design life for a hydro scheme and so the analusis was carried out for a different set of parameters 30 ytar design life and 2% O\&M costs (as opposed to 3%)

It can be seen that the tanff requred is strongly dependent on the design life that 15 assumed for the plant but in any case the feasiblitv of each profect is described as "bordetline" (Note that this study was cartied out before the New Electrictry Trading Afrangements and Renewables Obligation were announced and so the economic assessment is indicatuye only)

In thes study, it is assumed that all sites with a head over 2 m will be economuc This is probably a farly opumstec sew sunce micto-hydto is not a new technology and thus vnable stes are likely in the vast majouty of cases to have already been assessed and developed However, it can be justufied on the grounds that.
(a) mucro-hydro could feature as a strategic policy in part of the Environment Agency's weir refurbishment programme (in such an instance it is estumated that approximately onlv $10-20 \%$ additional costs would be associated with the hydro-scheme civl component)
(b) many micro hydro propects will be developed by lage pavate landowners to met on sute electucity demand Thus is more likelv to be economuc since the generated power is teplacing that imported from an electricity suppleer at $\sim 7 \mathrm{p} / \mathrm{kWh}$ For example, at Houghton Mill (East Anglia), the Natonal Trust are proceeding with a hydro-electric scheme as part of a major tefurbishment of the Mill despıte the fact that the design head is
only 137 m The system is expected to produce $116 \mathrm{MWh} / \mathrm{year}$ and the Trust intend to consume the power in 1ts propertes in the region.

4.4

Summary and Conclusions
The economic resource is influenced, and determined by, the cost of electricty and the commercial environment. Both have been analysed separately and the am here is to pull the two elements together to present a concise view of what renewable energy development can be expected in the next 10 years

From the rewlew of the new commercial framework for electincity generaton, two thing ate clearly apparent Firstly, that the economic assessment is highly sensuture to the details of the Renewables Obligaton, NETA and, to a lesser extent, the Climate Change Levy The Government has chosen to introduce all thite nutatines in parallel and this has resulted in a hugh degree of uncertainty in the market place This assessment is carmed out based on the best information svaulable to date but thas information is changing on a monthly basis Secondly, it has become apparent that the economic vabilty of a project is sugruficantly different when wiewed from the pergpective of an independent, as opposed to a supplict-ted, developet Consequently, each are presented in turn

Suppler Hed Generator

For a generator aed to the suppher it is assumed that the full value of the Renewables Obligation Certficate and the Levy Exempton Certuficate are met Thus is in tine with the Government's expectations of the Oblgation.

In the 'best case' scenatio (Table 42), bromass is likely to command a price of 54 $\mathrm{p} / \mathrm{kWh}$, wind and hydro (because of thest intermittent naturc) $51 \mathrm{p} / \mathrm{kWh}$ and energy from-waste (because it is excluded from the Obligatom) $24 \mathrm{p} / \mathrm{kWh}$ In the 'worst case' scenario envisaged the could drop to $52 \mathrm{p} / \mathrm{kWh}, 47 \mathrm{p} / \mathrm{kWh}$ and 22 $\mathrm{p} / \mathrm{kWh}$ respecavely With the excepan of energy from waste these puces are markedly bugher than those acheved under NFFO and should therefore support the development of significant new capacity However, there are a number of caveats

Energy crops will only attan a pnce of $54 \mathrm{p} / \mathrm{kWh}$ if supported by both capital grants and the MAFF subssdes for farmers The extent of the economic resource is therefore determined by the size of these support measures Given the budgets proposed for these measures, only a relatvely small proporton of the theoretical resource will be developed in the near tern (see Appendix A) Thss also affects the explotation of forestry residues since they are onls Likely to be developed in conjunctan with energy crops

2 There ate sentous concents as to whether enetgy-from-waste will be financeable with no suppott other than the Climate Change Levy exemption As noted earher, sf contract lengths fall from 15 years to 10 yeats, electricty prices for capitil intensive profects, such as energy from waste, wlll need to increase by 50% Energy from waste plants will in many cases be financed by waste management companues on the strength of thear balance sheet and will thus not necessanly need a "bankable" contract. For the purposes of ths study, we have assumed that this will be the case and that the economic resource will only be constraned by local targets for recycleng waste However, we note the concems of the televant trade assocration in response to the Government's consultation document and surmuse that that the Government is puttung a sizeable renewable energy resource at nisk in this way by assuming, without due evidence, that 'energy from waste is commercally vable, well established in the market and can compete with electricity from fossil fuels ${ }^{*}$

3 Supplet-ued genctators are unlikely to be interested in 'small projects', say less than 1 MWV Thus covers mucto-hydro, blogas, PV and small wind Such projects have been, and ate likely to contonue to be, developed by independents (see below)

Independent Genemtor

For reasons mentioned eather, independent generators may not recesve the full value of the Renewables Oblgation Certuficate (ROC) and Levy Exempton Ceruficate (LEC) Whule the exact value is highly debatable at the present time, it has been assumed that they will receive between $50-70 \%$ of the ROC value and $50-100 \%$ of the LEC value Consequently, blomass will recesve between 35 $45 \mathrm{p} / \mathrm{kWh}$, wind and hydro $30-42 \mathrm{p} / \mathrm{kWh}$ and energy-from waste $20-24$ $\mathrm{p} / \mathrm{kWh}$ At these prices only wind, landfill gas and sewage gas projects are likely to
be viable and, in the case of wind, this will ental the development of 'prime' locations Since the windest places are normally the most visible and often located in protected environments this teduces the chances of plannurg success

From the perspective of a regronal resource study, it mav not seem relevant as to whether projects ate developed by an independent or supplier-ted companv However, in the hight of the thurd point (above), it is logical to conclude that thete will be little or no development of small generators - micro-hydto, PV, small wind and brogas (agriculturad residues) It 15 worth noting at this ponnt that many of these may be developed as an alternative to grid connection for remote dwellings or on the basis of environmental concern, but from a purely economic perspective they ate unlikelv to be able to attract finance

It should also be noted that, historically, independent generators have achieved a far hugher rate of success in achueving planning consent and so, apart from concerns that the Renewables Obligaton may be vewed as ant-compeutive (in favour of generators ted ro supplers), this has real implications for the likelihood of renewable energy development

A summary of the prospects for each technology is presented in Table 46 and this forms the basis for the calculation of the economuc resource (Appendix A)
Table 4.6. Prospects for RE Technology

	Wind (latre)	Wind (small)	Energy crop: (forestry residues)	Agncultoral residues	Waste	Landfill gan $^{\text {a }}$	Sewaye	FV	Hydro (mero/small)
Technology statua	Commertal	Commercial in nuche markets	Under development	Combustion proven, gastificatoon and pyrolysis under development	Combustion proven, masfication and pyrolysis urder development	Cummeral	Commeral	Urder development	Commerpal
Unt plant buze (MW)	0-2	00002-0006	5-30	05-20	>5	011	05-60	0-01	0025
$\begin{aligned} & \text { Capital coest } \\ & (f / \mathrm{kW}) \end{aligned}$	$650-880$	20005000	1900-30010	2000 4500	30004500	750-1000	1000-1200	>5000	20003000
Average NFFO5 pnce ($\mathrm{p} / \mathrm{kWh}$)	$288-418$	N/A	$\overline{\mathrm{N}} / \mathrm{A}$	N / A	243	273	N / A	N / A	403
Frice (p/kWh) pndex Oblyation, CCL, NETA d) supplies-tued i) independent	$\begin{aligned} & 47-51 \\ & 30-4.2 \end{aligned}$	N / A	$\begin{aligned} & 52-5.4 \\ & 15-45 \\ & \text { + capital grants } \\ & \text { a planting } \\ & \text { subsidy } \\ & \hline \end{aligned}$	$\begin{aligned} & 52-54 \\ & 35-45 \end{aligned}$	$\begin{aligned} & 22-24 \\ & 20-24 \end{aligned}$	$\begin{aligned} & 52-54 \\ & 35-45 \end{aligned}$	$\begin{aligned} & 5.2-54 \\ & 35-45 \end{aligned}$	N/A	$\begin{aligned} & 47-51 \\ & 35-45 \end{aligned}$
Key vantables	SlaE, Wind fpeed	Application, Wind speed	Transport + fuel costs	Transport costs, proportion of food processing tesddure	5uze	Fize	Size	Vahue as a buulding matenal	Head, flow cate, exsstung cavl structure
Economic resource (key assimmptons)	Wind speed > 7 m / s	More cxpensive than a diesel generator	Only for sites with capital granes and MAFF plantong subsidy	Only of ancludes food processing ot other organde ressdues	Domestec sector only	Sites over 500 (100) tonnes capacity	Sewuge works 5crying populations above 90,000	Replacernent for 'prestuplous' office claidangs	$\begin{aligned} & >25 \mathrm{~kW} \text { Head } \\ & >2 \mathrm{~m} \end{aligned}$
Scope fer reduced ptices	Moderate	Moderate (could decrease If lange number of untt sold)	Good in medium term	Depends on agncultural polnics	Limuted	Lamited	Limuted	Good In medum / long term (depends on matket sure)	Lumted
Comments	Depends on network \& plantuog constraunts		Resource limuted by extent of capital grants \& planting scheme	Diffecults financing small brgas projects	Development may be constrained by waste recyclugg polenes	Potentally large profits under Oblegation but many stres have already been developed	Potentallv larke profites under Gbligation but ตานท stes have already been developed	Potentally large growth in domestic sector even though not economic	Viable stites bleely to already be developed

5.1
 Kintroduction

The development of renewable energy rescutces in the West Midands Region is governed by National, Regronal plannung guidance and policles presented within Development Plans (Structure Plans, Local Plans and Unutars Development Plans) These three levels of advice set a context for the identification of appropriate sites sutable for the development of renewable energy mutatuves

For the purposes of this study the 'West Mudands' is tallen to refer to the Government Office for the West Midlands Regronal Area coverng-

- The Shire Countes of Shropshire, Staffordshire, Warwickshare, and Worcestershıre,
- The Urutary Areas of Herefordshire, Telford and Wrekin, atnd Stoke on Trent, and
* The Mecropolitan Districts of Birmingham, Coventry, Dudley, Sandwell, Solhull, Walsall, and Wolverhatnpton

This chapter of the report begros by describing the three levels of plannung advace governung the development of renewable energy in the West Midlands region, and the planning application process it then describes the renewable policies that coser the study area (both adopted and draft/deposit policies) and discusses the main planing policies that gwide the use/siang of renewable technologes

The Planning regime at any ume reflects hustonic public atatudes and concerns Attitudes to the balance between protection of local and global environments and, thus, to renewable energy are changing rapidly This is evident in recently adopted Plans, and even more so in current draft revisions, wheh are specifically considered in Section 57 It is also likely to affect the level of support ot otherwise for individual Planrung applicanons in the future Given the lead tume on renewable energy developments, change may not have anv signuficant impact for the Government's 2010 target, but should be a relevant consideration for the longer tumescale of RPG

Hrerarchy of Plaming Gudance Relateng to the Development of Rentwable Energy in the West Mrdlands
At the natomal level, Planrung Polvcy Guidance Note 22. Renewable Energy (PPG22) [DETR, 1993] descnbes the general ams of govemment policy as they relate to renewable energy and land use plannung At the regional level, Regional Planning Gudance for the West Mdlands (RPG11) [DETR, 1994a] sets out a framework for development in the regron Together, Planning Pobicy Gudance and Regronal Planning Gudance provide the basis for the prepatation of Development Plans These plans gude development control decisions at the local level Both strategre Structure Plans and Local Plans or the combined Unitary Plans have been revewed for this study The following sectons prowde an explanation of the role of planning policy at each of these levels

National Gwdance

Planning Policy Gudance (PPG) notes set out the Government's poliches on different aspects of planning They provide gudance that should be taken into account by local authornes as they prepare thenr development plans In addurin, PPGs may be matenal to decisions on mdividual plannung applications and appeals

PPG22 1ssutd in 1993, and 1ts annex 1ssued in 1994 [DET'R, 1994b] deal specifically with tenewable energy It states cleanty that

In planning for the wse of Land by energ generaing installanonts, the Gowermments gentral atoss are
(a) To ensure that saczety's meeds for energy ant satusied, wonssfent with protecting the locat' and global emmonment,
(b) To ensure that envuromental damage or lass of amenty caused by enryy suppty and anallary actuntes is momensed, and
(c) To pretumt untatessaty steriksaton of entergy resources

PPG22 dentifies the development plans as being the framework documents for identifying sites and suggests that each authouty should consider the contribution It can male to meeting the local, regronal and national targets However, in suggesting that all authontues should contribute towards the delwery of renewable
energy, it is recogrused that renewable energy resources can only be developed where they occur

The PPG tecognises that sites lkely to be promoted for the development of tencwable cnetgy soutces will often be in rural areas, and as such will almost always have some local envitonmental effects Thus, it 18 also tecognised that the Government's aums to encourage the development of renewable enetgy soutces will have to be balanced with the need to protect the environment.

The PPG recognises the special designations that cover rutal ateas, and their impact on the abilte to develop renewable energy schemes That is, partucular care should be taken in developing renewable energy projects in National Parks, Areas of Outstanding Natural Beauty and Sites of Special Scientific Interest Simular conditions arise in areas of archaeological or historic importance Following are quotes from PPG22 that note the potental conflict between renewable energy and environmental issues

PPG22 "Partcular cart shoulil be takent, in assestug proppsals for developtyg renewable enerny projects in Nathonal Parks, Areas of Outctaniong Natural Beany and Sites of Specal Satemtfofo Internest"
 Green Belt, withess the partckeler proposal consthtutes a wse appropprate to a rural area. Any leutepopsent should not whure the whsuat amenthes of the Green Aeft"

PPG22 "Lacal authonties should take acount of the Govrnment's pohty for nemewable eneny sources along wath thase on swib tophes as Green Belts, consenvation arvas on town and wounty, and industrat and consmeraal dewdopment"

PPG22 contanns a number of detailed Annexes considening diffetent forms of renewable energy Each form of development has tes own petental impacts that need to be taken into consideration before a scheme is implemented The forms of renewable energy covered ate*

- Wind energy,
- Waste combuston,
- Hydro power,
- Wood fuel,
- Anactobic digestron,
- Using landfill gas, and
- Actave solar systems

Other Planning Policy Gudance Notes are also relevant to this study in determinugg constraints to the development of renewable resources When consideting the constraints to the introduction of renewable energy schemes, the PPG7 (Countryside) [DETR, 1997], PPG2 (Greenbelts) [DETR, 1995], PPG 9 (Nature Conservation) [DETR, 1994c], PPG15 (Planning and the Histonc Environment) (DETR, 1994d] and PPG16 (Archaeology) DDETR, 1994e] should be considered These PPG notes seek to protect the more sensituve parts of the environment and thus their requirements need to be balanced with the tequitements of the natonal tenewable energy strategy

Regonal Gudance

The primary purpose of Regonal Planning Gudance is to set the framework for development plans in the tegion As such, RPG11 presents a general strategy for development in the West Mdlands dunng the period to 2011 'Ths is currentlv under ceview RPG11 sets out a semes of btoad themes for development Of partcular relevance to the development of renewable energy are the following objectres

- "encouragng the conservation of natural resources through reducing demand, using renewable resources and recycleng",
- "ensuming that development is cartied out in an environmentally sensitave manner", and
- "ensuring a strong and permanent Green Belt"

The gudance buulds on PPG22 to state that "The development of renewable energy resources should be encouraged where there are prospects of them beng economacallv viable and environmentally acceptable The advantages of having a clear renewable energy resource, whech can contribute to local, regional and natonal requirements, and the benefits to the local economv, should be weighed against other environmental mpacts" It identfies the followng resources to be potentally avaulable tin the region

- biofuels,
a sigrificant effect on their area" (emphasis added)

 planrung for different trpes of development. The Structure Plan policies are not
 (d■П) आek әппว standing towns and ciues, the strategic and local planning responsibilues are control policies and proposals In metropolitan areas, and some larger free Using these policies as a framenork, local planming authorities produce local pians
There plans contanng the distuct councils' detaled site specific development כyroads
 planning authonty, the county council, sets out its strategic policies for Plans of Untary Development Plans The Structure Plan is where the strategic
 national and regronal policy at the local level PPGs and RPG Indeed, the role of the development plan is to implement prepanng plans, local authoutles must have regard to national polucies set out in imptovement of the physical environment, and the management of traffic In land, the conservation of the natutal beauty and amentry of the land, the Developinent plans contain policies and proposals for the development and use of
direction of future regional guidance. indicating the potental for renewable energy in the region, will inform the

Structure plan policies provide the basis for mote detaled polleces to be developed in Local Plans PPG22 advises that authontes prepanng Local Plans should "include their specific policies for developing renewable energy sources and should identify broad locatoons, or specific sites suatable for the vanous types of renewable installanons" (emphasis added)

In the case of Ututary Development Plans, Part I fulfils a role compatable to that of the Structure Plan as described above, and Part II serves a purpose analogous to that of the local plan

Development plans follow a staged preparation, such that a rewrew of the current/adopted plan begins before the end of the plan period Most plannung authontues begin the review process by $1 s$ surng topic papers to stmulate debate on the general themes to be addressed in the plan. A consultatuve draft plan is then produced, with a public consultation period of six weeks duration The plans ate then modified to talke account of comments recenved and placed on deposit for formal public consultation Objections to plant policies that remain unresolved are considered at an examinaton an publec, in the case of Structure Plans, and a public local inquity in the case of Local Plans A report to the local plannung authonty is prepared by the inquiry inspector, recommending amendments to the plan Subsequently, a seaes of proposed modifications are 15 sued by the planning authority for further public comment Assuming no further $1 s s u e s$ are ralsed, the modified plan progresses to adoption

Phaning Applicatons

Planning permission is required for bulding, engmeenng operations and changes in land use Most actavites involved in renewable energ projects will therefore requare plannung permission The erecton of wind turbines, for example, is classed as a buldng operition, and may also require engineering operations, and therefore needs to have planning permission Growing crops will not generally requie planning permussion, although the constuctuon of a generating plant for the processing of crops would. Smilarly the cteaton of landfill sites, sewerage plants, and related generatug plants also requme plannug permission

Connecton to the local electacity distribution network may also need permission from the local planrung authoritv or consent from the Secretary of State In the case of solar power, the erection of solar panels on a commercial basis will usually require planning permussion However, solar panels on domestre properties do not
nomally requre plannug permussion, unless the propertles lies within i constrvaton atea

It is also possible, for some kinds of renewable energy schemes, to secure a temporary planning permission This may be appropuate where the local planning authority is uncertan about the impact on the local environtrent and it wishes to taal a potental 'bad negghbour' development Ths may not be appropalate where a large capital set up cost is requred, but may be appropriate for small schemes or Where the infrastructure costs can be easily transferred

In order to take account of the enwironmental impact of renewable energy schernes, PPG22 states that local planung authonmes and others should consider, at an eady stage, whether an erritonmental assessment (EA) should be undertaken The environmental assessment ptocedure allows issues such as landscape, aur quality, water quadity, local ecology and noise to be consideted prior to the determinato of planning applicatoon, therefore ensuring that planning decisions are made with due regard to likely environmental effects Only two categozes of renewables technologres carry a mandatory requicement for environmental assessment 'These are therrnal power stabons or other combustion installatoons with a heat output of 300 MW s of more and waste disposal anstallations for the incineration or treament of special waste

Most renewable energy schemes fall withun Schedule 2 of the Town and Country Planning Act (Assessment of Envitonmental Effects) Regulations 1988 They therefore require envronmental assessment if they are likely to have signficant effects on the environment The responsibulty for deciding whether a Schedule 2 propect requires environmental assessment lues with the local planning authonty, though the decision is open to challenge by appeal to the Secretafy of State

In 1989, as part of the puvatisation of the electictity supply industy, the NonFossil Fuel Obligation (NFFO) was untroduced. This obliges the teggonal electricity companues to secure a specified part of therr electricity supply from non fossil fuel sources Since 1990,933 projects have been contracted under the NFFO, Scottsh Renewables Oblgation (SRO) and the Northem lreland (NI NFFO)

Table 51 summarises the status of these applications Nationally 89% of the planning appleatons determuned to date, have been approved However, this data hides marked differences between technokgy bands, with wind farm proposals accounting for a majotity of ptopects tefused planning permussion to date

Over a thurd of all contracted tenewable energy schemes have yet to enter the planntig arena Thetefore whilst the statustes on approved applicatons appear encoutaing it is important to note that many schemes have not yet reached this stage Thus, whilst less than a quarter (760 Mw DNC) of the of renewable energy capacity contracted in England \&c Wales under the NFFO process (3270 MW DNC) had been commissioned by 30 June 2000 this is only partly due to plannung policy
 February 2000

PLANNING STATUS	$\begin{gathered} \text { NFFO } \\ -1 \end{gathered}$	$\begin{gathered} \mathrm{NFFO} \\ -2 \end{gathered}$	$\begin{gathered} \text { NFFO } \\ -3 \end{gathered}$	$\underset{\sim}{\mathrm{NFFO}}$	$\begin{gathered} \text { NFFO- } \\ 5 \end{gathered}$	$\begin{gathered} \text { N1 } \\ \text { NFFO } \end{gathered}$	$\begin{gathered} \hline \text { NI } \\ \text { NFFO } \end{gathered}$	SRO 1	SRO-2	SRO 3	ALL
No applcazon required	23	28	4	4	1	6	1	1	0	0	63
No applucaton subrntted	\$	13	23	75	160	0	4	4	15	42	344
Application awrating decision	0	0	5	16	30	0	1	3	1	3	59
Application withdrawn	0	E	B	2	1	0	0	0	0	0	19
Planחมกg permission granted	44	63	85	85	65	14	4	18	9	7	394
Planting petmustion refured	0	10	16	13	4	0	0	4	1	1	49
TOTAL	75	122	141	195	261	20	10	30	26	23	933

Source [K Cadacle, 2000]

Methodology
In revewing the planning policy context for the development of tenewable energy in the West Midlands a two taer approach was adopted In the first instance a questonnare based consultation exercise was undertaken The second, more untensive stage, compnised a detaled review of development plan polucses

Consultation

In August 2000, an invitation to comment was sent to each of the local plannung authomaes as well as other interested organisations The purpose of this consultation exercise was to gather infotmation on four 188 ues as follows
(a) Exastigs renowable energy generatom,
(b) Premous estmater of the resounce,
(c) Potentsal mpants and constrants, and
(d) Plammg policues

Responses were recesved from 22 organisatuons Appendix B contans a table summarising these responses Reponses to (a) and (b) are latgely reported elsewhere in thus report. However, responses to issues (c) and (d) have informed the review of plannugg policy context and constrants, the findings of which are reported in the following secturns

Remev of Development Plans

The development plans (Structure, Local and Unitary Development) relevant to this study are set out in Table 52

For each planning authonts a two stage revew was conducted In the first instance, adopted plans wete teviewed in order to determune the stance of the local planning authonty in tems of the development of renewable energy resources, and also the narure of any polucies (primatly environtrental) that rught act as a constrant to such activity In the second, whete avalable, deposit draft plans were considered in order to understand the way in which tenewable energy Issues are being dealt with through the plan review process

For each authorty a proforma was completed as a means of summarising plan poliaes as well as responses from the consultation exercise. These are presented in Appendix C.

The findings of this teview ate teported in the following sections

Table 52 Plants Reviewed for this Study

Note * Adopted Plan before local authonty reorgansation

Thus section ourines the planning policy contest in the West Midlands regrion. It discusses the nature of adopted policies and the differences in stance between each of the ateas Section 56 will draw further on the poluctes described here, considering their mplications in terms of the actual development of renewable cesources

Overnew

Table 53 summarises way in which the adopted development plans deal with renewable energy It highlights those that include a plannung polkcy on renewable enetgy as well as those that address the 18sue in more detal through the inclusion of a technology sperafic policy

None of the adopted County Structute Plans contain polites telang to renewable energy This is perhaps a function of the age of the documents, dating from the early 1990s, pror to the publication of PPG22 However, two of the Unitary Development Plans include a general pollcy relang to renewable energs

14 of the 27 adopted Local Plans include a general planning polscy on renewable energy Those Local Plans makng tefetence to renewable energy are those that have been most tecently published, wth 12 of the 14 dating from post 1997 This is encouraging, suggestng that local authontes are increasingly trcognsing the potental contribution of tenewable resources

Locil Authonty Approaches

The style and detal of the local plan policies, as well as explanatory text, vanes between districts In several of the local plans renewable energy is dealt with in a strigle fartly broad statement. In such cases the local authority has very little to base their develupment control deaksons on In other cases, development plan pollcies are more detaled, providing mote specific gudance on the factors that would be considered in the granung of plannung permission.

The Luchfield Local Plan (adopted in June 1998) makes a britf and concise statement in support of renewable energy It states that
 prouded there is no anametable unpact on the envrosment and the critera of polacy DC ${ }^{1}$

South Shropshire is an example of an authority that is more detaled and prescruptuve in therr approach For example, Polcy GP6 (Renewable Energy) of the Local Plan (adopted in October 1994) states that:
"Proposals will normalb be permattid for developments destaped to generats or capture energy frow naturally sustawnable soumes if
 are manmsed,
(b) Tbe proposals would mot adversefy affact the Area of Oustsassding Naturad Beaky or the Area of Speazal Lamdstape Charatter,
(c) The proposals take full acount of pothy LN11 (protection of sutes of pexal suentfir interest and nature conservathon),
(d) The proposals are conssitent mith the untena set out in polay GP2 (new development general requinements), and
(0) The proposals area aciompanued by an enswrommental statement where ths ss required by the Town and County Plannug (assessment of envronnental effects) Regulatons, 1988 "

Surnlarly the Wychavon Local Plan states that
"In defermunty apphications for renewable energy dewelepments, the Counal whil need to be satsfifed that then whll be no adurse envronmental effects whuth would present a nsk to bealth and safeys, hass of resdentral amenty dure to notse or other disturbances, damage to ecologkal and nature convervation merests or lamwe to zmportant Landscipe dergnahons Apphowsts are uskeid to demmansirate the exient thent the proposal would fontrbutit to national und Local energy needs, hmotug greentouse gases, the theehy effart of the proposel on the local enurromnent and the Hheely whact on the gualitites and character of the area In addation, proposals null not nomnaly be allowed wutbsn the Cotswold AONB "

The Peak Distuct Natuonal Park Structure includes a general, farly restncture, policy on energy
"Mayor deviopment to generate or store enerqy whil not be permothed other thans in exaptional anvomstances Small stale development to generate or store enengy to meet a local need whll
 the buildangs at senvs"

The Natoonal Park local plan howevet, is more encouraging, stating that
"The development of a renewable energy sourve whll be permatted provied shat the development and all anallory works matuding fransmasson lines can be accommodated without harm fo the valued charractersutuss or other establasthed wsers of the arta"

In general, the tone of the planning policies is one of overall encouragement, subject to certan criteria The nature of the catena mentioned in the plan policies varues between distncts The followng Issues are illustratuve of the types of factors considered by local planning authorites across the regon

- Effects on agriculture, forestry and exasting land uses,
- Effect on designated landscapes,
- Effect on ecological or nature conservation interests,
- Visual impact,
- Impact on conservation areas, 1 sted buldings, scheduled ancient monuments, and archaeological remans,
- Health and safety implications,
- Noise levels,
- Effect on the amenty of local residents,
- Provistor of adequate vehicular actess,
- Impact on the hughway network and additional traffic,
- Impact on land after operation ceases;
- Impact of connection to the gud,
- Electromagnetic disturbance, and
- Effect on airport llight paths

Environmental/Development Led Policies

In general terms, the plannig policies of the Staffordshure districts stand out as being partucularly detaled Polucies for the South Staffordshure, Stafford and Cannock Chase areas describe a number of criteria, to which applications for the development of renewable energy resources are expected to comply The polleles for these three districts are very similar, considering ecological, environmental and conservation issues as well as more technical concerns such as connection to the national grtd and levels of electromagnetic disturbance. The Wrekin local plan adopts a sumular standpoint stanng that proposals should accord with other policies relanng to countryside, open land, and histome envitonment and should also not damage public nghts of way or cause electromagnetic mterference

In Shropshre (Oswestry and South Shropshure) those polices relating to renewable energy appear to be more concerned with envronmental effects and in paracular landscape impacts Similarty, in the Dudley Unitary Development Plan, the approach is vety much envitonmental lod, stating sumply that "The council will encourage and suppott the development of renewable energy products provided that the visual and environmental impact on the surrounding area is acceptable"

However, in the Worcestershure distacts (Wychavon and Malveen Hills) a less qualitative, more quantatave stance $1 s$ conveyed. For example pollcies state that proposals will be permitted provided that they have the potental to make a contabution to national, tegional or local tatgets This is a factor that is not stated in polleces elsewhere in the region. Whalst the Wychavon plan acknowledges the need to protect the Area of Outstanding Natural Beaury, policses in this do not seem to emphasise envionmental and conservation issues as is the case elsewhere. Rugby is also of a smular standpoint, setung out a range of cotena addressing the need to avord adverse effects on dwellings and businesses nearby and arport flight paths, but giving verv little emphass to environmental effects

Technology Spectific Polecres

Of the 14 adopted development plans that address renewable energy, 4 (Malvern Hills, Oswestry, South Shropshite and W'rekin) adopt a dual approach including, firstly, a policy generally seehing to encourage the development of renewable resources, and secondly more detaled policy relateng specifically to wind farm development

As with the genetal policies the tone of the technology specific policies differs between districts Indeed, the South Shropshite plan makes clear that visual umpact and effect on landscape quality are pimary concerns
"Proposait for antdfarm developmant whll onty be permitted watbun the Area of Outstondang Natural Beawfy and Area of Spenal Landstape Charader where uis provninence and ynsbriky Wowle not aultersefy affect the quabity, sethng and enfoyment, of the Landscepe Elsembere
 not bape an adverse mpat on landscape qualty and recreattontal enyorment"

However, the approach of the Wrekn Local Plans is more positwe, addressing design issues and ways in which adverse impact may be mingated For example, it states that

The Counal whll permut the development of schemes to generate from mond swbyect to the Countrysude and Open Land pohaes of thes plan and pronded that
(a) The ster, grownems and colour of thrithes are destigted to the scale and grade of the Lamdorm, to ensure that, while a stable ar flow is momatred to the terbine, the wsual ampat on the landsompe is munnsed,
 landscape,
(c) The furtines are located se as they atosd senstite shatines where they would dominate loms distance meets,
(a) Descriptive waterzal for example photomontage, ts prostded, to enable an assessment to be made of the ousual impact of the deselopment,

(f) The turtunes ary lacatod so as to mntmase then mpact on nestental development, haghengs, or publr nghts of way with parthwhar regand for nowse, shadow ficker and parssble machrne forlure,
(6) The durecton of turbine rotation is dexsyed to mnnomse nuswal tmpact, and
(b) An arsessment is made of the kevely mpact apon operatronal anffelds, radar and telecomиmuntations"

Simularly, the Malvern Huls Local Plan states that
rproposals for wind energy mstallations wall be permitted proveded if can be shown that
(a) There wowld be no siguticant harm on the amenty of adfonning restiental propertes,
(b) Detatis of materxal and colowr wre prowded wheth an sympathetes to the character of the area as a whok
(c) Detarks of the prachial avatabridy of the means of connecton to the earsing elecinaty supple network are acceptabte,
(d) Detats of photo-montages are promded to assess the thsuat tmpact of the development for langer soale developments,
 the stife,
(f) The development is set bate from mafor roads and ravinugs at least by the betght of the proposed turbwes so as to achetve maxamum safery,
(9) They do not comfict wath other nelvant polcues of thes bous plan.'

Table 5.3. Summary of Revew of Adopred plans

Structure Plan/UDP area	Local Plan Area	Date of Adoption	Polucy on renewable energy	Technology specific policy
Waruckshlre		Sept 91	\mathbf{x}	X
	North MWewhckshire	Mas) 95	X	X
	Nuneatoon and Bedworth	Feb 93	\underline{x}	X
	Rugbs	Jun '97	\checkmark	X
	Warwek	Apr 95	X	X
	Stratford upon Avon	May ${ }^{2} 00$	X	X
Worcestershure		Jun "93	x	X
	Wyre Forest	Mar "96	X	X
	\#romsgrove	Feb 96	\underline{x}	X
	Redutch]an"98	x	X
	W.ychavon	Mar 98	\checkmark	X
	Worcester	Jand 9 ¢	$\underline{\text { x }}$	X
	Malvers Hills		\checkmark	\checkmark
Stapfordshure		Apr ${ }^{4} 91$	X	X
	Newcasile - undet - Lymue	May ${ }^{\text {c95 }}$	X	X
	Scaffordshire Moorlands	Sept 98	\checkmark	X
	Stafford	Ont ${ }^{\text {P }}$	1	X
	East Staffordshure	Mat '99	X	X
	South Staffordkhure	Dec *96	\checkmark	X
	Cannock Chase	Mas 97	\checkmark	X
	Luchfield	Jun 988	\checkmark	X
	Tamworth	Jan ${ }^{\text {a }}$ 5	x	\mathbf{X}
Shropsture		Jer *93	X	I
	Oswestry	Iun 99	\checkmark	\checkmark
	North Shropthire	Aug'96	X	X
	Shrewsburs and Atcham	92	X	X
	South Shropshite	Oct 94	1	\checkmark
	Didgnorth	..	X	$\underline{1}$
	${ }^{\text {Wr rehln* }}$	[eb 00	\checkmark	\checkmark
Herefordshure				
	Hereford ${ }^{\text {a }}$		\checkmark	X
	Leormuster *		7	X
	Souch Herefordshure *		\checkmark	X

Structure Plan/UDP area	Local Plan Area	Date of Adoption	Follicy on tenewable energ:	Tectunalngy epecific policy
Stoke on Trent		Sep ${ }^{2} 3$	\underline{Y}	X
Birnurgham		Jul 93	X	X
Coventry		Mat 93	Y	X
Dodles		Nov"93	\checkmark	K
Sandweil			Y	X
Soluhull		Apr ${ }^{6} 97$	X	K
Walkall		Mat ${ }^{\text {¢ }}$ 3	$\underline{1}$	x
Wolverhampton			X	\mathbf{x}
Petah Dirtract National Park		Apal 1994	\checkmark	X
	Peah Distret Natmral Park	Dec 2000	\checkmark	X

Note * Adopted Plan before local authontr reorgansamon

5.6

The Constrants of Planning Pobcy

 OyerviewWhalst generally encouraging the use of renewable energy resoutces planning pobcy does, nonetheless, constran the development of renewable technologeres 1n certain respects and in certan locations lndeed, as described above, development plan policies outhe a number of criterna to which proposals must accord Futhermore, renewable entetgy operatons are required, in the same manner as all other development, to correspond with other development plan polucies

In the case of renewable energy soutces environmental concerns are paramount and thus the pronty accorded by the planning system to protect the natural and bult environment 18 a potentally signicicant constraint to their development $A t$ the macro scale the planing system seeks to control development of protected landscapes, often covenng large areas Indeed, PPG22 recognses that the development of tenewable energy will be subject to stricter plannung controls in areas designated to protect the landscape and wildife A s such, proposals to generate power from certan rencwable technologles in areas designated as Natonal Parks, Ateas of Outstanding Natural Beautv, and locally important landscapes (classed as Special Landscape Areas or Areas of Great Landscape Value) will be subject to special scrutny Indeed, whilst these designatoons do not preclude development, they introduce additonal develupment control issues which seek to ensure that development is compatible with the envitonmental quality of
the atea Sites of Special Scienufic Interest, Special Protection Areas, and Spectal Areas of Conservation, Ramsar Sites, Nattonal Nature Reserves, Anctent Woodland ate also sigruficant.

In terms of the development of certann technologes such environmental planning policies are ilkely to be a sigmficant constrant Whilst it is recogrused that these polcies do not entarely preclude development, for the purpose of this study, and the calculation of the deliverable resource, these have been considered as "blanket' constrants That 18 , it is considered that signuficant development of renewable resources in these areas, of the scale that could make a contrbution to regiona] ouput, is unlikely to go ahead. These areas bave therefore been excluded Table 54 llustrates the likelv constrant that each of these designatoons may have upon the development of each of the renewable technologies contederod in this study

The following paragraphs describe the signuicance of these environmental plannung constraints and their relevance to each of the technologies

Table 5.4 Planning Polscy Constrants

			$\begin{aligned} & \text { 品 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { 蚵 } \\ & \text { 娄 } \\ & \text { 㚜 } \end{aligned}$	$\begin{aligned} & \text { 另 } \\ & \text { 盆 } \end{aligned}$	$\frac{山}{5}$
Natoral Park	\checkmark	\checkmark	$\checkmark 3$	－	－	12	12	$\sqrt{2}$	－	．
AONB	\checkmark	$\sqrt{3}$	\checkmark	－	－	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	－	
Green Belt	\checkmark	\checkmark	\checkmark	－	－	$\sqrt{2}$	$\sqrt{2}$	12	－	－
Naturnal Nature Reserve	\checkmark	\checkmark	\checkmark	$\checkmark 1$	／1	\checkmark	\checkmark	\checkmark	\checkmark	N／A
Spectal Protection Areas	\checkmark	\checkmark	\checkmark	$\checkmark 1$	＊1	\checkmark	\checkmark	\checkmark	\checkmark	N／A
Special treas of Conservatun	\checkmark	\checkmark	\checkmark	$\checkmark 1$	4	\checkmark	\checkmark	\checkmark	\checkmark	N／A
Anccent Woodlands	\checkmark	1	\checkmark	N / A	$\checkmark 1$	\checkmark	\checkmark	\checkmark	\checkmark	N／A
SSSI	\checkmark	N／A								
Ramsat Sutes	\checkmark	N／A								

KEY
（ Indicates a constrant to the resource
$\checkmark 1$ Designation would be a constrant to the development of processing／generation faclitues but would not necessanly be a constrant to the use of land to collect the resource（For example，Forestry residue could be collected from an ancient woodland as long as the processing plant was struated elsewhere）
\checkmark Indicates a constiaint to the resource of an entirely new facklity is requred These designations miny not necessanly constrain the resource if power wete to be genecated from an existang site（for example，generation from an exisung landfill site）
，3 Indicates a constrant to the resoutce dependant upon scale of the technology
－Indicates no signiticant constrant to the resource

National Park

The Peak District Natornal Park covers the northem section of Staffordshire The Natonal Park Authonty is a local planning authorty in its own nght and therefore has its own Structure and Local Plans, as indicated above. Whilst the Natuonal Park Authority supports the panciples of sustanable development it gives pnority to conserving and enhancing the Nanonal Park. The Structure Plan therefore allows only for small scale power schemes that are consistent whth local needs and where they can be accommodated without damage to the appearance of the area Thus states that
"Major development to generate or store energy whll not be permatied atber than m exaptional arcumstantes and that "Small scale deturtopment to generase or store entrgy' to mees' a local need" wall nomadly be permitied pronded that th does not detrath from the apprarance of the landscappe or the buildngs it semes"

The local plan policy suggests that the development of renewable energy cesources will be permitted provided that they do not ham the Natoonal Park's valued chatacteristic Renewable energy schemes need therefore to be acceptable in the landscape Size, destgri, stung, impact on wildife and assochated landscape are all mportant considerations

The plan states clearly that "wind farms or large scale individual wind turbines are not acceptable" Indeed, it considers free standing structures of more than a few meters in height to have a signficant visual impact and thus unacceptable wthin the Natuonal Park. For thus reason, the area of the Peale District Natonal Park has been excluded from the area in whuch large scale wnd turbines mught be developed

However, the local plan states that small scale wind turbines located on fatm buildings or propertues may be permuted Indeed, the explanatory text states that
"Some small scale, normally supplementary, poust generaton, may comsthate "permatted
development' for example, a small indurdwal murbut, stitd on a domethc propery or farm
bwalding]"

Permssion is likely to depend on the situng and scale of equipment Table 54 therefore notes that withn the National Park, small scale wind technology may be constraned, subject to precise location and nsual impact

The local plan does not make specific reference to other technologes However, it is important to consider the way in which the Natonal Park may influence other technologies. In the case of energy crops, the development of processing plants may be constramed by the general development policees In addmon, whilst the conversion of agricultutal land to energy crops would mot requre planning permission, any large scale change in the National Park (patticularly where thes might impact visually) is lisely to be resisted.

Simularlp, generation of power from waste, sewage or landfill gas is unlikely to be acceptable, unless the basic facilttues already exist Natonal Park status is not considered to be a constrant to generation from agricultural or forestry residues

AONB

Areas of Outstanding Natural Beauty (AONB) are recogrised as ratonally important landscapes in much the same way as Natonal Parks The West Midlands region contans three AONB, The Malvern Hills, The Shropshire Hulls, and Cannock Chase Unllke National Parls, these areas are the responsibility of local plannig authonmes Structure Plans and, where relevant, Local Plans, therefore melude polucies that seek to preserve the natural beauty and landscape qualits of these areas

For example, the Cannock Chase AONB is described in both the Stucture Plan and the Local Plan The Structure Plan Policy is as follows
'Tbe hacal anthonzter wall contswe to consenve and entame the landsade and the nature consenvaton and ncreaton intersts of Camock Chase Area of Outstanding Naturul Beanty and sts seting Withm the $A O N B$, develonnent wall normally be nestratod to uses compathble anth the conservation of the natural beauty of the arrea A Ay proposaly for development will be

The Cannock Chase Local Plan states that
'The antegraty of the Camock Chase $A O N B$ watl be protected in the followng way
 comservintom and rucreakon onterest of the AONB and wis setitng
(b) Only detelopment wheb as compathble with the concernation of the natural beauty of the AONB and es in accordonce unth other relevant polyeres of the Lacal Phan will be permutted,
(c) Proposals for dexelopment on the frimges of the AONB wall be consadered in fore context of the pramaly obectuves of proticting the Area's quatuy,
 throughout the dergnated area "

Proposals for development of renewable energy in the AONB are therefore pudged by such criteria. In several cases, it was found that renewable energy policies refer specfically to the protection of the AONB For example, the South Shropshire plan states that generaton from renewable resources will onlv be permitted if they do not adversely affect the AONB

AONB status is a particulat constrant on the construction of wind turbines, as it is percerved that their visual impact would be detrmental to landscape qualuty For example, the South Staffordshire plan states that proposals for wind turbines will not be permatted where they have a sigruficant mpact on the landscape quality of the AONB

In terms of constraning the development of renewable energy resources, $A O N B 5$ have a similat influence as the Natuonal Park Indecd, whalst their status docs fot necessanly preclude development, the overring concem to protect landscape and environmental quality is likely to be a constrant to development, particulatly of large scale wind turbines AONBs have therefore been excluded from the area used to calculate the wind resource The mpact of AONBs on the other technologes is much the same as descrubed above in the context of the natonal park

Green Belt

Green Belts are designated around major urban areas Within the study area they apply around the West Midlands and Notth Staffotdshire conutbatron's and also Burton on Trent Green Belts serve five mann purpotes These ate to

- Check the unrestructed sprawl of large built up areas,
* Prevent neighboung towns from merging into one another,
- Assist in safeguatding the countryside from encroachment,
- Preserve the setnog and spectal character of histonc towns, and
- Assist in urban regeneration, by encouragng the recycling of derelat and other urban land

These areas are therefore not designated for any partucular landscape value However, in seeking to schieve the objectives outhnes above Green Belts scek to ptevent development which is likely to prejudice the openness of the countryside Inside, the Green Belt, approval should not be given, except in very special circumstances, for the constructon of new buldings or for the change of use of existang buldings for purposes other than agriculture and forestry, outdoor sport, cemeteries, instututions, or for other uses appropriate to a rutal area.

Therefore, the development of infrastructure associated with renewable energy resources in the Green Belt is likely to be strongly resisted. Indeed, PPG22 on renewable energy states that "in line with PPG2 very spectal circumstances ate needed to justify development in the Green Belt, urless the partacular proposal constitutes a use apptoprate to a rural atea. Any development should not injute the visual amerntes of the Green Belt " Green Belts are therefore likely to be a constraint to the development of large scale wind farms and to the construction of facilatise required for the generator of power from energy crops, waste, sewage, or landfill However, small scale wand turbines fixed to existng buldings would be mote apptopnate in the Green Belt

SLA/AGLV

Spectal Landscape Areas and Areas of Great Landscape Value are locally designated landscapes, usually following a revew of landscapes nnstugated bv the County or District Authority As such, these areas do not carry the same status as natonally destgnated landscapes (National Parks and AONBs) Notwithstandtng, the local desighation of these ateas, in considening proposals for development, the local planning authonty will have patticulat regard for the effect on the landscape

Research has found that the local plannung authonmes are beginning to take a different approach to the designation of these locally important landscapes Current adopted Structure Plans define broad areas, wheh are subsequently detaled in current adopted Local Plans However, moce recent Stracture Plans tend not to define such areas on the key dagram, instead takng a broader new
seekng to protect landscape and environmental quality actoss the county in a more holistre sense

Given the current polcy context in which these ateas are defined withun adopted Local Plans, these designations are considered to constrann the development of renewable energy resources in the same manner as the other landscape designations However, it is important to recognse that these are not nationally recogrised and thus, carry a lower importance as a basis for development control decisions

Figure 51 illustrates the extent of National Patk, AONB, Green Belt and SLA/AGLV withun the West Mudands region

2-1Hi ipecial Sclentific Interest/Ramsar Sites/Natomal Natute Reserves/ hip=lancient Woodland/Special Protection Areas and Spectal Areas of Conservaton

SSSIs, Ramsar Stes, NNRs, Scheduled Ancient W'oodland, SPAs and SACs are natuonally recognised sites which afford a high level of protection to flora and fauna The locatoon of these sites is illustrated in Figures 5,2-5 7 It is important when considering the impact of development on these sites that attention is pald to the potental damage which could occur from development adacent to, or some distance from, the site Local Plan Policies therefore seek to control dev elopment that may have an adverse effect on such areas

Most of these ateas cover a telatively small area However, they a signficant constraint upon the siting of infrastucture They are therefore a constrant to the development of renewable enetgy schetnes One excepton to thus may be the managed collectoon of agticultural and forest tesidues, provided that physscal nffrastructure was located elsewhere

DocNo Rev Finnil Dution Nownmer 2001

Doc Ne Ray Finue Duto Novemiter 2004
WiNEEYROMECTSMEEEESRWMM1400 14DOEESTMH144MDOOC

Results of Consulation

Responses recerved in reply to the invitanon to comment sent our in August remforce the significance of these constrants Indeed, many local authontues, in therr wntten responses, highlighted thest concern over the environmental impact of renewable energy technologies Therr impact on protected landscapes was a partucular concern of many respondents Indeed, authoatues frequently noted that the protection of open countrysde and landscape qualrty would conanue to be given high pronty and that for renewable energy resources to be exploited thev would need to be satsfied that the impact on the landscape was acceptable Visual impact was also frequently mentioned as a potentiallv sigruficant constraint to the development of tenewable resources, pataculatly in the case of wind

Future Planning Policy
This secuon builds on secuon 55 to consider the future nature of planing policy as found in emerging plans

In revevnigg the planong policy context for the development of renewable energy in the West Midands region it 18 also mportant to consider the direction of polities curtently being developed as patt of the local plan tevicw process Indeed, in assessing fotute development potential these policies, and the thinking bethind them, reflecting the current position of the local authonty, are valuable In considering draft policies of this nature, 部 is important to acknowledge that these have yet to be subjected to Examination in Public or Inquiry That 1s, they have yet to be tested in the public arena and subject to central government scrutny As such, thev should not be vewed as polcy per se, rather they should be considered as an indication of the possible direction of future policy

Deposit draft plants and documents detaling proposed modificatrons have been revewed, where approptrate, for the study atea as a whole In areas whete the revew process is at an eadly stage (pror to the drafurig of specific polucies) discussions with plannung officers were held to establish the likely ditection of policies and the aspirations regarding tenewable energy

Structure Plan Polctes

Whlst nonc of the adopted structure plans make reference to renewable energy, all of the countues have included spectic polleces within their deposit draft plans The way in which each of the countres addresses tenewable energy dffer in tetms of style and level of detal as well as the way in wheh they gude Local Planning Authoures to deal woth the issues In general the polteres endorse renewable energy, subject to complance with orher plan policies, in particular those relating to environmental protection

Renewable energy 18 given the most detaled consideration in the Worcestershire Deposit Draft Structure Plan Here, three polscies are presented, supported by detalled explanatory text Policy EN1 (Renewable Energy Faciltres) provides the general statement, indicating the broad position of the County It states that
 other polves of the plan, partucularty those relating to local enveronmental effects of the develeqpment:"

The plan also includes two technology specific policies Poltcy EN2 (Wind Turbnes) states thar
'Proposaly for the developoment of indurduad wynd turbines or small chusters wall be alloweds' provaded that they.
 Londscapes,
(b) De not cakst snatetptable hamm to sature conservaton antersts
(6) Do mot ressit in excessste noxse pollutions, and
(d) Are acceptable in relation to other plan pothres"

The explanatory text clarifies these points staung that proposals for wind turbines "should be assessed aganst other pollcies contanned in thus Plan to ensure that the same considerations are given to the locaton and development of wind turbines as to other development"

The Structure Plan also recogruses that there is potental withan Worcestershure to generate energy from methane gas from landfill waste and the incineration of waste T'o thus end, Policy EN3 (Waste to Energy) states that
"Proposals for faczikites for the generation of energy from landfill waste or from the wanerators of
waste will be endorsed subyeat to other poikses an the plan and tf they prownde the beri prachuable
entronmetital optont

Warwickshire however, takes a very different approach Indeed, in the deposit draft version of the Warwickshure Structure Plan renewable energy is not considered as a specific stand alone policy Lnstead, it is addressed as part of Policy GD1 (general development) and thus presented as one of the overridug principles of the Structure Plan The policy states that
> "The overnding purpase of the Strulture Plan is to provide for a patitern of Revelopment whish consenves nesonness of hand and enengy, anouding manerats and water, and makes maximum ase of renevable exergy resources

Shropshire and Staffordshure take an approach that is essentally somewhere between these two exrremes, both presenung renewable energy as a single specific plan policy Policy p57 of the Shropshure and Telford \& Wrekin Jonnt Structure Plan Deposit Draft (2000) states that
"Develphments whrh generate and use energy from nowewable nsources an enconnaged in pronaple Lasal Plans will cantarn detauled poluzes whach will, ensurg that the national and local enveronmental, soasal, and ecomamuc benefits of indrudwal schemes are not offret by adverse efferis in people and 'be emstonment and that there is safe and adequate access"

Sumilarly, the Staffordshure Structure Plan and Stoke-on Trent Structure Plan (Deposit Draft) considers the issue as part of a broader policy considenng the conservation of energy and water Policy D7 states that
"Tn msressng developnsent propasals, measures which bop to comsenve naturnl resourves whll genervily be supporied. These snclude . use of nownable enengy resources for the dewlopmemi of
 hawng ragard to any potental adverse zmpacis on local people and the lacal envxromment.
 genteratory where appropnate

Lacal Plan Policies

Table 55 prondes an indicaton of the local plan review process in the region and the bay in which tenewable energy is berng considered The results of thas table should be interpteted whth caution as it summarises the findings of telephone conversations with plannung officers and therefore (in the cases where plans are at the pre-deposit stage) represents the opmion of individual officers, rather than the local plannugg authonty as a whole

Many of the local plans are currently at an early stage of revew The majonty of local plans are currently at the pre draft consultation stage At this stage most authontues are promanly concerned with key issues such as housing and employment However, duscussions with planning officers suggest that some authoritas have a very clear intenton to include policies on renewable enetgy as part of the local plan teriew process In other areas, however, it seems that rentwable energy is considered to be a peripheral concern.

For example, Stratford on Avon Distnct Councll, whilst cureently at the pre draft stage of revew, are conscious that the local plan should address issues conceming renewable energy The Stratford adopted plan (March 2000) does not include reference to renewable sourtes and the Council are awate that this is an omission that needs to be addressed The Stratford plan is unusual in that although verv recently adopted, has been subject to a prolonged process of agreement and therefore reflects policies initally drafted some years ago

Discussions with officers suggest that in future policy tenewable energy is likely to be addressed as a stand alone policy, or in conjunction with wider issues of energy efficiency Authonties teem teluctant to idenuff sites for the development of spectic tesoutces but ate keen to encourage technologes that will be compatuble with environmental, economie and social concerns

Results of the Consultation

Correspondence recenved in response to the invitation to comment sent out in August 2000 highlighted a general recogntion amongst local authontues that issues concernung renewable energy were likely to be important considetations during the process of plan rewiew Indeed, those authontes commentug in thas manner acknowledge the importance of addressing renewable resources through the planning process However, it is important not to generalise on the basis of these
comments, as they do not constutute a full sample Indeed, the responses recerved are Likely to be bias towards those authorimes with a greater interest in renewable energy

Table 55 Status of Plans Under Rewrew

$\begin{gathered} \text { Structure } \\ \text { Plan/VDP area } \end{gathered}$	Local Plan Area	Exdating te pollicy	Stage of Revicw	New/ Redrafted polacy	Intention to unclude policy
Warwickshure			Depost	\checkmark	
	North Warweckshire	X			1
	Nuneaton and Dedworth	X	Pre Depost ${ }^{2}$		
	Rugbr	\checkmark	Pre Deposit ${ }^{2}$		
	Warunck	X	Pre Deposit ${ }^{2}$		
	Stratford on Avon	X	Pre Depastt		\checkmark
Worcestershre		X	Deporje	\checkmark	
	Wyre Forest	X	Pre Deposit ${ }^{2}$		
	Bromsgrove	\mathbf{x}	Deposit	\checkmark	
	Reddutch	X	Pre Deposit ${ }^{2}$		7
	W ychavon	X	Pre Deposit ${ }^{2}$	-	-
	W orcester	\checkmark	Deposit Draft	\checkmark	
	Malvesp Fills	\checkmark	Pre Deprost ${ }^{2}$		
Staffordshare and Stoke on Trent			Deposit Draft	\checkmark	
- _	Newcastle - under - Lyme	X	Pre Deposst	\checkmark	
	Scaffordshure Moozlands	X			-
	Stafford	1		-	-
	East Staffordshure	X			-
	South Staffordkhure	1		-	-
	Cannock Chase	\checkmark	Pre Deposit		
	Lechfield	\checkmark	Pre Deposir		
	Tammorth	\checkmark	Pre Depasit		\checkmark
Scake on Trerle		X	Pre Depasit		
Shropshure and Telford and Wrekun		X	Depogit Draft	\checkmark	
- - - -	Oswescry	\checkmark	Pre Depust		- -
	Narth Shropshure	X	Pre Deposit		
	Shrewsbury and Atcham	x	Deporit Draft	\checkmark	
	South Shropsblure	\checkmark	Pre Deposit	\downarrow	
	Brtidgrorth	X			

Stactute Plan/UDP area	Lacal Plan Arra	Exastang re polacy	Stage of Review	New/ Redrafted polacy	Intention to include polley
Telford \& \% Wrelon UDP					
Herefordshire		.	Pre Deposit		\checkmark
Burmugham		Y	Deposit Draft	\checkmark	
Coventry		X	Deposit Draft	\downarrow	
Dudley		Y	Deposit Draft	\checkmark	
Sandwell		\checkmark	Deposit Draft	\checkmark	-
Sollhulll		$\underline{~}$	Pre Deposit		
WFalsall		X	Pre Deposit		\checkmark
Welverhamptor		X	Pre Depost		\downarrow
Peak Dystrict Natronal Park					
	Natiosal Park				

Key \downarrow indicates posiuve response
indicates uncertant - too early in the remew process, policies nor pet considered

5.8

Concfustons
Impact of Planning Policy on the Development of Renewable Energy

At present, there is a lack of specific gudance, at all levels, telating to the development of renewable energy cesources Whilst development plan polietes generally encourage the use of renewables, there are few specific policses or locational guidance within exisung adopted plans The review of development plans has shown that whilst those plans and polucies that do address the subject seem to encourage the use of renewable technologes, ther development is generally subject to a series of strict policy controls.

Environmental policies and land use designations ate cuttently a sigruficant constraint to the development of renewable energ\} The development of renewable technologres is likelv' to be most strictly controlled in cases where it will impact upon areas designated to protect landscape quality, Green Belt, the open countryside and ecologically umportant areas These represent a significant proportion of the area avalable in the region, thus considerably limut the search for vable sites Furthermore, outside of these broad areas, it is important to recognse
that planning permission will also be dependent upon a number of other local factors, with each case pudged on its ments

Planning polsces are a particular constraint to the development of wind technologies. Indeed, in addtion to policies controlling development per se, the development of wind turbines 38 constrained, through the planiung system, by poltacs secking to protect residential amenutv and prevent adverse visual intrusion on the landscape

Given that wind power has the greatest potental to contmbute to national renewable energy targets, the constrants on its development are partucularly significant. However, the calculatoon of the delivetable tesource suggests that despite these likely constraints, wnind power in the region an nonetheless make a potentally significant contribution to natonal targets

The development of other technologies is likely to be constramed where bulding is requred within these protected areas Generating and processing plants wull therefore need to be serisitupely located. Whilst the plantang of energy ccops does not require planning permussion, such development, on a large scale, is likelv to be stronglv resssted where it is perteived to have an adverse effect on landscape quallty ot visual impact

Implicatoons for Furare Plantung Guidance

The curtent wording of planning policies in Structure Plans, Local Plans and UDPs, is such that very few parameters are clearly defined, and there is therefore rarel\} a structured basis on which plannung decisions should/could be based Policies that state that renewable energy should make a significant contribution to natonal or regronal targets or should not have an adverse mpact on residental ameruty are thus open to wide interpretation Thus there is a need for more specific gudance on the development of renewable energy tesoutces at all levels

If the regron 18 to make a signficant contribution to the achuevement of natomal targets there 18 a need, in the first instance, for Regional Planning Guidance to address the issue more detall, indicating targets for each part of the region or hughightrig broad areas where the development of specific resources mught be wable, or should be considered In thus way RPG can provide a more robust framework for the development of Structure and Local Plan policies, paving the way for more effectuve policy at the local level

Structure Plans are beginning to give renewable energy a higher profile However, there is a need for them to give the issue more detaled consideration and give clearer guadance in the future Structure Plans should consider the viability of a tange of renewable energ, technologies in more detart within the County and should dtaft pollcies and identufy broad areas accordinglv Polcies being develuped by Worcestershure County Council are the best example in the regnon, to date Indeed, evidence suggests that there 15 a clear link, on a national level, between supportive plannung polucies and positive plarinug outcomes.

At the local plan level, it is clear that renewable energy is benng addressed through the local plan process However, there is a need for future policies to more clearly idenafy spectific ways in which generation from renewable resources should be encouraged Agzan, polacies should be technology specific Local Plans should define the criteria for controlling the detaded desjgr of renewable energy schemes, as well as detaling those citcumstances in which development will not be permutted The latter need not be presented in a negative tone. Indeed, by setting out more detaled polictes in thus respect, the local authontry will have be able to exert stricter controls on development and thus ensure that adverse impacts are minumsed Thus, local plan polcies that provide advice on design, situng and layout (such as in the current Wrekin Local Plan) should be followed as examples of best practice

6

Network Constraints

Introduction
Nerwork connection enables a generator to sell the electricity that is surplus to on sute demand to suppliers, for consumpton elsewhere It also prowides a back up source, ensurmg a secure supply It is therefore probable that all, or nearly all, new generators (whether using a renewable energy soutce or not) will be connected to the electricity network Consequentlv, the abluty to connect to the network, at a reasonable cost, is a major factor in assessing the potential for new rencwable enetgy schemes

The Utultres Act 2000 formall separated the supply and distabution functons of the Regional Electnaty Companies (RECs) in order to introduce competition in electriciry supply whalst recognising that the distributoon network is a natural monopoly within each region. The bodes responsible for management and operation of the network are now known as the Distribution Network Operators (DNOs) and at is the DNO that is responsible for the connectoon of embedded generators

There are 12 DNOs covering England, Scotland and Wales The distribution network in the West Madlands is operated by three DNOs GPU Power UK (formetly Midlands Electricity), Manweb and East Midlands Electricity ${ }^{9}$ Approximately 75% of the West Midlands network (in terms of land area) 18 owned and operated by GPU Power Notth West Shtopshire and Oswestry are operated bv Manweb and Nuneaton, Burton upon Trent, Coventry, Rugby, Warwick and part of Stratford upon Avon are operated by East Madlands Electricity

The putpose of this chapter is to determune the extent to which the existong electnity network in the West Midlands regon can accommodate the development of tenewable energy sources and to identufv, where possible, areas most approptrate for development

[^8]
62

621

Why the Electracty Network may be a Lumzing Fitctor
A Querion of Desgn
In otder to understand why the persent electncity networls may prove a limutung factor on the explottation of the renewable energy resource it is necessary to destribe something of the bistory of the UK electricity supply mdustry and the infrastructure that courrently exasts

Increasingly large power statons were built as the $20^{\text {h }}$ century progressed, determuned by the economues of scale in fossil-fuclled and then later nuclear power generaton. This trend towatds very latge power statons tequired the evolution of a ratuonal transmission system (the National Gedd) Operaturg at very hygh voltage (275 or 400 kV) the National Gnd enabled power to be transferted over long distances around the country so genetators no longer needed to be bult close to areas of demand and relatovely few, centrahsed plants could supply customers throughout the UK

These large power stations were connected to the natonal grid and therr output regulated or 'centrally disparched' so that the system operator could respond to the requirements of the connected load by scheduling stations in order of merrit In this tespect the hugh voltage (transmission) gud was, and is, an essentually active system whth the Nanonal Grid Company (NGC) both managing nerwork assets and maintainng a national balance between demand and supply

Below the Natonal Gid system a medrum and low voltage network exists, operated by the DNOs, to distrbute the power to individual customers This is indosated in Figure 61 The network is thered with electicity diswibuted through a sentes of layers' from hugh voltages (132 LV) to progressively lower voltage systems (typically $66 \mathrm{kV}, 33 \mathrm{kV}, 11 \mathrm{kV}$) and finallv to the domesuc customer at 230 V The key characteristac of this system 18 un-directonal power flow - from the grid supply ponnts (GSPs) down through the medum and low voltage networks to the customer The distribution system was thus designed as a largely passive networlk

Figute 61 Traditonal Electricty Distributuon Network

Wind Constramed	Predicted Genctation Mrx Consumpton Scenario			Deliverable Resource		
				Total	As UK Mux	
	Growth		rgy		Growth	Energy
	Contnued GWh		1ent		Contmued	Efficient
Onshore Wind	13\%	390	339	1,345	390	339
Energy Crops	16\%	480	418	67	67	67
Waste	17\%	510	444	282	282	282
Landfill gas	17\%	510	444	398	510	444
Other blomass	5\%	150	131	95	95	131
Other	3\%	90	78	11	11	11
Small hydro	1\%	30	26	4	4	4
subtotal	72\%	2,160	1,880	2,201	1,459	1,278
Offshore Wind	B\%	240	209	0	0	0
Existing	20\%	600	522	792	792	792
Total	100\%	3,000	2,611	2,993	2,150	2,069
					7.2\%	79\%

Embedded generation is defined as electricity generation that is connected to the distribution system ${ }^{10}$ as opposed to the transmission swstem (as shown in Figure 62) With the development of tugh efficencv gas turbines and renewable energy sources the number of embedded genetanon connected in the UK has accelerated in the last decade and this trend is likely to contriue Embedded generatoon can be connected as low as 230 V (for example photovoltatc systems below 5 kW), up to 11 kV and even at 132 kV (for a verf large wind farm for example) Crucally, the power flow is no longer necessarily in one direction and is no longet controlled by the system operator The UK electricty supply infrastructure was not designed with this in mind and this represents a fundamenteal difficulty to the development of embedded generation It is by no means impossible to connect further embedded generation but using the existing network imposes a number of design lumutations - these are described in further detal in 63 The bottom line is that

[^9]embedded generation must not cause a decrease in the quality of supply, introduce commercial risk or impact on levels of safety - all of which are of paramount concern to the Distribution Network Operator (DNO) and a mandator) requirement of their licence or the subject of regutation

Figure 62 Embedded Generation Wistin the Distribution Nerworts

The Cost of Constecison
Under the current frameworls, the DNO's man source of revenue is from the DUoS (Distubution Use of System) charge on each unt distrbuted for suppleers Generators do not pay DU0S on thesr exports and hence the connecton of loads (consumers) and generators must be treated differently

The cost of connecting a generator 18 currently assessed on an individual basis In response to specific applications, most DNOs currently offer a free intral meeting with generatots to discuss detalls of the proposed connection and provide ourline data on the DNO's mequirements If the generator decides to proceed with the connection this will normally be followed by a charge for further network studues and cost esumates A technocal gulde for prospective embedded generators has been produced by the DTI [ETSU, 1998c] - thus sets out tn more detal the statutory framework, costs and charges for connection The generator is currently
entutled to be charged the full cost of connection and any associated reinforcement, irrespectuve of depth into the network ("deep charging') As an example, a small (100 kW) generator wishing to connect to a distribution substaton (11 kV) may anticipate a charge of perhaps a few $£ 1000 \mathrm{~s}$, but this may result in increased fault levels 'upstream' and the necessity to replace some higher voltage switchgear In ths case the cost of connectoon could easilv escalate from a few $£ 1000$ s to $£ 1 / 4$ million or more

The DNO's licence contans a requrement to 'faciltate competition in generaton' Thus means that the DNO must not introduce unnecessary barriers to connection or favout one genetatot in pteference to anothet (without due technucal reason) However, if connecong a genetator to the network is likely to requre addational hardware or upgrading exisung equpment then the DNO is entutled to pass on the cost of this to the generator as above Under the present regulatory framework this is the only method by which DNOs can recover their costs (there is currentlv no cost passed onto other consumers to spread the effect) The result can be very high connecton charges in some locatons and 'arbitrary' costs dependent on the 'first come first served' nature that requests are taken on Thus if a single application puts the network above a threshold then they will beat the full incremental cost of the upgrade Subsequent tequests will then benefit for this new capacity in the system

Thus is a partcular problem for renewable genetators because they are relauvely small in size and so the connection costs represent a significantly latger part of the total investment cost than for a conventonal plant Consequently, connection costs may probubit the exploitation of renewable energy sources in these sites

6.3

Techncal Limtators

As discussedin 62 , the network was not designed with ermbedded generation in mind. The existung infrastructure therefore imposes a number of limutaons on the connection of new capacity - most are celev ant to all porental embedded generators, not just those from renewable sources Discussions with GPU Power and East Midlands Electucity highlighted two technical factors in partucular that are likely to restrict the capacity for further embedded generation fault levels imposed on 132 kV and lower voltage switchgear and voltage regulation on 11 kV lines

Fault Levels
A fault in the network is a low-mpedance electrical connection between live conductors or from a live conductor to earth, which shott arcuits the notmal loads on the network. This will result in a collapse in voltage close to the location of the fault and abnormally lugh currents in those parts of the network which form pathways from sources of electrical energy to the fault location These faults can occur at any tume due to inclement weather, thurd party damage of equpment falute

Different types of faults are possible The fault level at a pount in the distribuwon network is a measute of the short clrcult current that would occur in the event of a fault at that point (worse case sceriatio)

The fault level depends on the charactenstics of the electrical source and the total impedance of the networls components between the source and fault The mann grid supply into a distribution network, induction motor tum on and embedded generators all contribute towards the fautit level. When distribution systems were planned the designs assumed that fault levels would increase with load growth but that the signiticant fault contmbution would be from the higher voltage transmussion system The extensive development of embedded generation has caused an increase in fault levels far in excess of that onginally matropated

Five of the GSPs withen the GPU area are currently close to, or equalling; their fault level capabilty. Of these one hes outside the West Midlands region and it is understood that the switchgear at Gloucester 18 due to be replaced shortly The areas affected by the temarnugg three GSPs at Busteholm, Bishops Wiood and Cellarhead are indicated on Figure 63 It is clear that Bishops Wood and Cellarhead in partucular preclude extensive development across a large part of the Regon and, if the deliverable resource is to be fully exploited, should be seen as proctues for upgrading Regarding the East Midlands Electricity network, the company note "there is very litele scope in the Coventry/Rugby/Daventry/ Hinckley/Nuneaton area for sigruficant generatoon wnthout mapor renforcement Fault levels are very close to limats However, in the Warwick/Harbury area generation connected at 132 kV could be more easily be accepted '
$-+$

Filcrow	Fault Level Constraints on the Flectricity Network

Computer-based short curcuit studes must be carned out for prospective new generatots (in line with the procedutes described in Engineering Recommendatoon G74 [EA, 1992]) However, where the fault level at the GSP has already been reached, thus effectavely prevents the connection of any embedded generatot 'downstream' e to that sectoon of the netwotk below 132 kV The comnectuon of further generation would merease the fault levels beyond the equpment's design ratug and thus contravene the Health and Safety tegulations It is therefore elear that fault levels constrain the development of renewable energy across large areas of the West Mddands regon

It is of course possible to upgrade the 132 kV switchgear However, the cost is likely to be prohibitwe and beyond the capabilutes of a generator ${ }^{11}$ even if the cost of upgrading was to be shared between a number of potential generators Switchgear in the West Midlands was latgely installed th the 1960 s and $1 s$ expected to have a mumum of 50 years life A prospectue generator can therefore be expected to be charged for the cost of bunging forward this investment by about 10 years the charge equates to approximately half of the capital cost for thus part of the work

The contabution from a generator to fault levels can be reduced by increasing the umpedance of the network itself or between the network and the generator (such as by using reactors, transformers or fault curtent limters) An altematwe, for smaller generators, is to connect via an inverter which does not store energy and which is designed to prevent the transfer of short circuit current from the generatot ${ }^{12}$ DC sources such as photovoltanc cells would automatically be inverter connected Wind turbines may also be mverter-connected, although inverters may contribute towatds other problems such as harmonte emussions.
V oltage Regutatom
The DNO is tequired to supply electaciry within a certain tolerance band For domestac customers this 15 presently $230 \mathrm{~V}+10 / 6 \%$ The voltage on the 11 and 33 kV network 18 also regulated (to $\pm 6 \%$)

[^10]Voltage levels vary with location and time Voltages tend to fall when people are using a lot of electacity and they are often lower at the end of long distribution line due to the resistance of the cables Conversely, power in feeds from embedded generators tend to increase local voltage levels

For the GPW network many of the distribution substations are operatng very close to the upper statutory limat (116 kV) This is in order to sustain the voltage along the long rural lines Therefore the abulity to connect embedded generation is limited in many of the more rural areas because it mav increase the voltage above 116 kV

One solution is to connect embedded genetators drrettly to the 33 kV network, where the voltage is more easily regulated This is likely to be an opton only for generators above 5 MW where the cost is more readily absorbed in the total project cost

Other
In adduton to voltage tegulation, the power transport capacity (for both the cables and equipment) may be limuted by the thermal ratugs Power quality issues such as harmonics and voltage flucker are already covered by the appropnate Engmeerng Recommendations $1 e$ a generator not metang the requred quality of supply would not be approved for connection anyway, regardless of the netwotlc capacity

Network Benefits
Developers draw attentun to the fact that embedded generation can actually enhance the network and save the DNO money and that therefore they should be rewarded for this in some way The potental benefits are discussed below.
(i) Improve Secuary of Supply

It is argued that the presence of adduonal generaton capacity on the svstem located close to the demand must improve the secunty of supply to the local network, such that if there is a tault the embedded generator will contunue to support the demand. However, the is only true if the avalability of the embedded generator can be relled upon, that the generaton itself does not requite a connecton to the network to operate and if the system can be operated 'islanded' from the rest of the system In relation to the former, Engreering Recommendation P2/5 [EA, 1978] docs not recognuse any benefit to a DNO if embedded generation supples
an island of demand, such benefits are considered incidental For safety reasons, operation in this mode will certanly be prevented by control and protection equpment, which is requred by Engineering Recommendation G59/1 [EA, 1991]
(ii) Reduce Distribution Losses

If all the genetation is absorbed close to its connection point, at all umes of the day and for all times of the year, 1418 likely that the generation will reduce the energy losses on the distribuaon system Conversely, if the generaton exceeds the level of local load at all umes and causes large power flows back through the system into the transmussion systems it is likelv that the generation will increase the energy losses In practuce, depending on how the system is balanced, the truth will he somewhere in between - a generator will tend to decrease the power flows during petrods of peak demand but increase the power flows durng periods of minmum demand Note that for a very small generator, such as a roof mounted photovoltaic systetm, the distribuaon losses will generally be reduced
(iiv) Avold or Defer Network Reinforcement
Embedded generaton may reduce the thermal loading on lines and transformets thereby extending the life of the asset Howevet, the generation can orly be used to avoud/delay reinforcement if its output can be relled upon by the DNO, as mentioned previousl), and is bound by contract The most common reason fot network teinforcement is to satusfy securty rather than capacts, requrements In such cases the DNO Is verv andikely to consider the use of embedded generation in preference to spending capital on lines, cables etc The former is a much lugher nisk option [J Stnclar, 2000]

Undoubtedly, embedded genetation does have 'added value' in certan locations and for certain generator types Howevet, besides the technocal bamers there are a number of signuficant regulatory barriets to tealising these benefits

A DNO is not allowed any return on assets that provide a connectoon if they were funded by the generator, and the generator does not pay any use of system chatge Consequently, the DNO has no direct financial benefit from a generator However, a DNO 18 allowed a teturn on assers that it funds to extend its distrbution network Snce there is no financial incentive (currently) for the DNO
to make use of embedded generation to redure network investment it is likely to regatd generation as more of a handrance to meeting the conditions in 1 ts licence than an opportunity from whech it could benefit in the neat future ${ }^{13}$

6.5

Estmated Network Capacity

The abluty of the distribution network to accommodate more embedded genetation was reviewed on a national basis in 1999 [ETSU, 1999b] Two calculations were undertaken
(i) A 'crude estumate' simply assuming that 100 MW of new generation can be connected at each GSP in a DNO's area (taking account of the vews of DNO companes where they have specificallv indicated that a GSP has limited scope for connection of new capacity)
(ii) A tevised estimate based on the following assumptons

- It may be possible to connect between 10 MW (rural) and 20 MW (uubani) at most 33 kV substations,
- It may be possible to connect between 2 MW (rural) and 5 MW (urban) at most 11 kV substations

A correcton factor was then applied to account for the interacton between generatots The meferaction could be caused by transient stablity considerations, the cumulative effect of the reacave power flows under statt up conditons, system protection, earthing or system operation

The totals are indrated below for each DNO

[^11]Table 61 Indicature network capacity

DNO	i) Estimated capacity (MW)	ii) Revised estimate (MW)
GPU Power	885	330
East Midlands Electricity	2766	920
Manweb	1244	460

The 'revised estumates', above, are used to calculate the total capacity for new renewable genematon in the West Midlands region, by applving the following assumptrons
(i) The West Midlands network is compured of sections of all three networks (GPU, EME and Manweb) As a first approximation, the regronal capacity 18 therefore taken according to the proportion of the region covered ($75 \%, 20 \%$ and 5% respectuvely)
(ii) Since the study was undertaken, apptoximately 40 MW of new generation (renewable and conventional) has been connected The remaining capacity is thus adjusted accordingly
(iii) Currently, over half of the embedded generation connected to the network is non-tenewable (as in Chapter 2) This trend has been assumed to contunue

On this basis, the capacity for new embedded gencration in the West Midlands region, without major network renforcement, is estumated to be in the range of $300-500 \mathrm{MW}$, of which half (between $150-250 \mathrm{MW}$) can be expected to be avalable for renewable generatoon Thus will also be location-dependent, it does not imply that this capacity necessanly exists where the resource is most vable

Summary

The capacity for cornecung further renewable generation in the West Midlands is estumated to be of the order of $150-250 \mathrm{MW}$ While there is a considerable degree of uncertainty in this result it is clear that it is alriost an order of magratude short of the calculated deliverable resource (1367 MW) and stgrificantly short of the new capacity reguired if the Region is to supply 10% of its electoraty from renewable sources (approxumately 600 MW)

The current distribution networl imposes two key limatations on the connection of further embedded generation, namely fault levelt and voltage regulatorn. These limit the areas sutable for development even before planning restactions and the physical resource itself are accounted for In the case of fault levels, the problem can be overcome, to some extent, by using DC (ninverter) connections but this is not an option for all technologres

However, the problem is essentally commercial rather than techncal The network can be upgraded to accommodate more embedded generation - sufficient to accept 10% or more renewable (embedded generation) But, under the cument regulatory framework the DNO recetves no incentrve for connectung embedded generators and so, in order to prevent an increase in the cost to consumers, must pass on the full (deep) connection charge to the generator This is the limang factor - the ability of the generator to meet the connectuon costs

Following responses to the DTI consultation document 'Network management issues' (published in November 1999) a point industry/govemment wotking group on embedded generaton was set up in Match 2000 The Group are currently preparing a number of papers, whech are likely to be made avalable to the public and to form the basis of a consultation document to be sssued by the Government catly next year

One of the key issues is the provision of information by each of the DNOs highlighting areas within their network where the connecton of embedded generation is not expected to be a problem In such areas connection costs will be lower and will serve to channel the development of renewables into the most surtable areas (from a network perspectrve) However, it is important to note that even If this is introduced as a requirement for DNOs (smatar to say the NGC's 7 year statement) it will only consider constrants at 33 kV and above simply because of the extent and susceptbility to change of the 11 kV network ${ }^{14}$ Consequenty, it will not help small embedded generators wishing to connect at 11 kV and tryng to identify areas whete voltage regulaton may be a problem.

[^12]In the longer termalternatue mechanums must be found for financing the cost of upgrading the network to permit more widespread connection An opportunaty for addressing this $15 s u e$ was missed in Aprl 2000 when the regulator, OFGEM, completed 1ts' phice teview Another pace review is not due for 5 years One option would be to subsidise the connectan cost by the generatot from a central source (eg the Climate Change Levy) Another altematue is the noton of introducing a Distribution use of System (DUOS) type charge fot all generators that could be used by the DNO to rase the required finatice § Snclatr, 2000]

This issue is addressed, but not resolved, in the EC proposal for a Renewable Energ Electricty Directuve [EC, 2000] The following comment is made on Article 7 (grid connection and renforcement assues
'It has been surgested, as a general rule, that connecton costs of renewable generators should be botne by the grid operator, to faclitate deployment of RES installations It is doubtful whether the approach tan be consideted approptate In fact, 1 t would lead to a situation where the distance to the grid would be irrelevant to potential investors Such an approach would thus encourage non economic unstallations'

It condudes with some general principles

- The full costs and benefits associated with the connectoon of a new RESinstallation should be made transparent,
- Future costs and benefits to the gnd-system, such as avorded or postponed reinforcement, should be taken into account, and
* Thete should be fules foteseering compensation pryments of subsequent persons connecting to the gad benefit from a grid asset (connection or strengthening) associated with and pald for by a fitst person connecting to the grad

It is interesting to note how other countries have addressed the problem of network connection Denmark, for example, has a very high penetration of wind energy (over 25% of instalted generation capacity in the western half) The fee for connecang embedded generation is the same, whether or not networls reinforcement 18 required The cost is then averaged and passed onto the
consumet La Germany, reinforcement for a partaculat project is reflected in a general morease in the Use of System chatges

Deliverable Resource for the West

 Midlands
Introducton

Section 3 of thus report has demonstrated that, whulst a lumuted number of techrologics ate technically feastbly in the West Midands, the electrncity that thev can theoretically genctate is many tumes the current consumpton in the regron Secton 4 followed this with a discussion of the factors that make renewable electricty generateng projects economically vable Thus included the key financial tssues that may influence the investment decisions of prospective profect developers of varrous types

Thus section will draw together the results of these analyses and, together with an understandrng of the environmental and plannugg constrants, attempt to define a deliverable resource for the tegion

Definition of Deliverable Resource

For thas study, the delverable resource for the regron has been defined as
The electricity that could be realistcally expected to be generated from renewable soutces in 2010, after taking into account

- The technucal ablity of equpment to generate electuaty in the natutal envaromment of the tegron
- An economuc frameworl, bult on the proposed Renewables Obligation, Climate Change Levy, and currently proposed captal grants schemes, that is complete and implemented in such a way that it sumulates commercially viable developments
- The likellhood that these projects will galn sufficient public support and all necessary development consents as required'

This delverable resource could therefore be viewed as the maxumam generation that could be achuevable with all possible support and encoutigement from govemment at the local and national level Howerer, it must be tecogrased that whilst the resource may have no particular barrers to its full development as detined by thus study, almost certanly a number of potental projects will not be realised due to unforeseen cricumstances The Regron wide nature of the study will have contributed to this maccuracy and it can be antecipated that more detaled local investgatons will be required to fully tale into account site location issues and detailed propect specific design economics

Deftrerable Remewable Resource

In order to evaluate the delverable resource for the region it is necessary to appls the constrants detaled in Sectons 4,5 and 6 The specific assumptons that have been applied in each technology area will vary sygnficantl, and these are summansed in Table 71 below More detalled explanatons can be found in Appendix A.

Table 7.1. Dellverable Resource Assumpoons

Resource	Technology	Deliverable resource assumptions	Type of Key constrant
Wind	Large scale potental	Only those sites with hugher average wind speeds (above 6 ms ${ }^{1}$) will be developed Athough development of lowet wind speed sites is technucally possible, these ate less likely to be developed in the foreseeable future Planning and development constrants will exclude most development from all designated areas	Plannung, Economac
	Large scale probable	Only those sites with higher average wind speeds (above $7 \mathrm{~ms}{ }^{1}$) will be developed Although development of lower wind speed sutes is technically possible, these are less likely to be developed in the foreseeable future Planning and development constraints will exclude most development from all designated areas	Planrung, Environmental \& Economic
	Small scale	Strall scale development of wnd turbines is likely to occur at only a very limited scale, as these systems are only economic an very specific creumstances	Economic

Resource	Technology	Deliverable resource assumptions	Type of Key constraint
Bromass	Energy crops	The tesource will only be developed in conpunction with Government planting and capital grants, whuch are limuted by budget	Economic - grant funding requred
	Agricultural ressdues	Resource will only be developed in confuncton with other food ressidues These are of limited avallability in the region	Economic - gate fees required
	Forestry resudues	It will only be economic to collect matenal from on going forestry operatoms in compuncton with local energy ctop proyect	Resource - only some forestry residues
	W'astes	Capital intensive projects require long term disposal contracts that will only be available in munucipal waste sector Energy 18 recovered from a sigruficant propottion of tegion's wastes in existung or planned faciltres and thus further development may hamper resource recovery or reçcling potental	Resource. Recycling and recovery targets
	Scwage	Assumed only to be economic at sewage works serving major populanon centres	Economic
	Landfill gas	Gas generation is only sigmificant at larger stes to jusufy generation plant	Economy
Solar	PV (domesuc)	Although no domestc PV systerns will be economic, a natuonal PV grant scherne wall delver development	Economic - grant funding requred
	PV Commercial	Majonty of development will be as an altetnadue to bigh quality cladding on prestigious office buildrigs	Economic
Water	Small Hydro	There are very few sites that have sufficient flow and head for development.	Economue

Table 72 lllustrates the extent of the delverable resource and how there 15 wathation from the denved figures for the theoretcal and econome resoutce Plant that is already operating and projects that are planned are differentated in the right hand section The table also illustrates the relationshp between the deliverable resource and the current and predicted electrictity supply in the region.

The 'porential large wind resource' is based on the development of all areas with wind speeds of over $6 \mathrm{~ms}^{-1}$, and the 'probable large scale wind resource' is for areas over 7 ms ${ }^{1}$ These areas are illustrated in Figure 71 and Figure 7.2 respectuvely

 of the wind resource makes on the potental deliverable resources in the regon This table shows a significant increase in the 'potental' deliverable tesource avalable in the region compared to the 'probable' analysts Thus is almost enutely due to the 75% uncrease in land area that may be acceptable and economic to develop for wind technologies This imples that all of the 2010 electricity consumpton could be met by the large scale wind resource alone

It should be noted that the capacity predicted above would requure the installation of over 13,000 wind generators, distributed over an area of $223 \mathrm{~km}^{2}$ Thus represents 17% of the land area of the West Midlands Region.
Table 72. Theoretical. Economic and Deliverable Resoutce in the W/est Midlands Region

Technel		Theoretical Reteurce (GWh)	$\begin{gathered} \text { Economic } \\ \text { Rhearem (GWh) } \end{gathered}$	Dellwirnble Reseurce (GWh)	Delverablat Remurcal (Miv)	Current Gmarmiln (BWh)	Planned instaliend capmelty (inc NFFO cemin incte \& DTI Field Trial) (GWh)	Now Ganerallan (GWh)
Wind	Large - potential	225482	13974	44000	20081			
	Large - probable	225482	12535	1345	512			1345
	Small	2	\checkmark		-			
Diomase	Enargy crope	1727	67	67	\%			97
	Agriculturai	421	45	25	3		14	7
	Fonestry	12	41	41	5			41
	Wanter	4.504	329	74	39	502	202	0
	Stwilpe gas	107	76	76	10	47		29
	Lentilil gme	1,018	* ${ }^{3}$	$4{ }^{4}$	77	240	267	130
Solur	Fholowattalc	2,249	\sim	11	15	01	0	11
Hydro	Mlatasmall	11	7	7	1	3	0.2	4
Tomin		230,63	14,200	- 4103	73	72	Tim	S34
1 1sel Cor	eption (populition brivd)	26113	20113	20113		21113	26113	21113
2010 Cor	apion (erimmiod)	30000	30,000	30.000		30000	30000	30000
Reseurce	\% of 19st consumplion	52\%	55\%	1\%		3.0\%	22\%	4.3\%
Rewere	\% of 2010 canoumption	715\%.	43\%	10\%		2.0\%	1縎	54\%

Symbol ~ Neglighbe (lass thal hat of the final digit showif)
The loled row onty melualac the wind ritecurcon inul if "probable"
Note that the Deliverable Resources shown on this table are the maximum envisaged For some technologes (eg large wind) it is probable that not all this resource will be developed

In order to understand local implicatons of the resource identafied in Table 7 1, a sub regoral assessment was conducted Thas amed to provide the relevant resoutce data for the followng five sub regonal groupngs of authonnes

- Staffordshire county (including the Stoke on Trent Unstary Authonty),
- Shropshire county (including the Telford \& Wieken Unitary Authorty),
- The countres of Herefordshore and Worcestershite,
* Warwickshure country, inctuding the City of Coventry, and
* The metropoltan areas of Burmingham, Soluhull, Walsall, Dudley, Sandwell and Wolverbampton

The sub regions selected for this analves generally fall along bistoric county boundaties as llustrated in Figure 73 However, the countres of Hereford and Worcestershure have been combined and the enty of Coventry included in Warmekshire They have been selected with a view to the presentation of results to stakeholder groups and the boundaries drawn do not intend to relect anty polutal or physical comment

Data for these assessments has generally been drawn from ongnal data sources, where the required detall has been avalable However, due to the inclusion of Coventry in "Warwickshire', some detall relating to bomass resources has been lost

Tables 73 to 77 illustrates the theoretucal, economuc and deliverable tesources and an estanate of the exisang generation in the sub-region. These results are compared to the current and predicted electricity consumption in the sub-region in 2010

Appendix D contans figures llustratug the followng for each sub region.

- The arcas for the 'deliverable' wind resource,
* The porental area for generation from energy crops
$+$
- The potentail area for generation from agncultural tesidues, and
- The existing and planned renewable energy generators in the region.
Table 7.3. Theoreacal. Economic and Delverable Resource.in Staffordshice

Table 74. Theoretical, Economic and Deliverable Resource in Shropshire

Technelogy		Theioratical Rewource (BWh)	Ecenemic Reseurce (GWh)	Deliveralthe Reseurce (GWh)	Delivaraluh Resteurne (IMW)
Wind	Large - polanial	10,475	40,040	1533	6,362
	Large - probabla	40475	4,477	259	110
	Smmill	~	\cdots	-	-
Blomass	Enarry crope	445	20	20	3
	Angrallural	113	4	4	0
	Fornelry	25	11	11	1
	Wemele	677	73	73	\bigcirc
	Sowege gat	3	5	5	1
	Lindifil gat	120	02	82	7
Solar	Photowilaw	1.11	\checkmark	1	1
Hystro	Mercorsmal	3	3	3	1
Tome		42,18	48.5	$4{ }_{4}$	135
1880 Coneumpton (population based)		2101	2101	2101	
2010 Conoumpllon (esilmated)		2414	2414	2,414	
Resource an \% of 185 eenmumplimn Resoure as \% ef 2 Il cenmmplion		2955\%	221\%	22\%	
		2572\%	103\%	1.\%	

The total now only includial the wind rewourcel thati is "probable"

Table 7.5 Theoretral, Economic and Deluemble Resource in Herefordshire and Worcestershire

Table 7.6. Theorctical, Economic and Deiverable Resource in Wharwickshite

[^13]
7.5

Sensitituity

It is useful to illustrate the sensidvity of the results derived by testang some of the assumptons that have been made in the analysis Three key areas have been idenafied as examples of thas

- The effect of assumptans on economic vability of wind energy development;
- The effect of an enhanced energy crop planting scheme to cover all potental projects in the tegion, and
- The impact of the full costs of electrreity distrubution network remforcement beng passed on to project developers

These are summansed, along with thert effect on installed capacity, in Table 78
Table 78 Sentuvity Analyses

	Base Case	Test
Wind	Development economic in all undesygated areas wnth wind speeds of greater than $6 \mathrm{~ms}{ }^{1}$	Development economic in all undesignated areas with wind speeds of greater than 7 ms '
Electuctry Generated (GWh)	44,000	1,345
Installicd Capacty (MW)	20,091	614
Area of instaliation (km^{2})	2,232	68
Biomass - energy crops	Limited support avalable for planting grants (Cost approximately f ${ }^{3} 5$ million for tegron	All projects supported (Cost Approximately $£ 62$ million for tegion)
Electricty generated (GWh)	67	1,727
Installed capacity (MW)	9	219
Iand area planted (ha)	516	66.596
Electracity distribution network	Cost of electucty network upgrading borne by network operators	Full costs of electricty network upgrading borne by tenewable energy projects
Installed capacty (MW)	1365	250

The clear message from Table 78 is that the econome and policy framework that suppotts, or constrans, renewable electricity generatron can have a sigruticant impact to the deliverable resource

Wend Resancue Sensturty

The sensitivity of the presentation of the deliverable resource for the regron is heavily dependent on the assumptons made as to the economuc wabiluty of wind generation This vability is a function of

- the wand speed at partucular sites,
- the performance of the technology available,
- the cost of that technology,
- the prevaling cost/avallability of investment capital,
- and the market conditions determinng the price recesved for the electrictry generated

Many different views may be taken to assess whether in general terms a certzin site with a certain wind speed should be secm as 'cconomic'

The vew of the Brtish Wind Energy Assoclation, the trade association of the LK wnd industrv, is spelted out in their policy document "Planning for Wind Energy", [BWEA, 2000] is that:
'The prace of wind energy capaary bar been conssdered tn the adophon of a momamam wand pheed of $7 \mathrm{~ms}^{1}$ in the lowest band It has been assamed that the unat speed bands athove thns mtnamsiom level represtst an accaptable pread for commenzal development nuth appraprate
 calowlated using a discount rate of 10% and syptcal industy data for tapotal cosss The
 represents the lower level of cost for off sore wind and thenfore allows a contghous range of casts for whad power deptoyment ${ }^{\text {13 }}$

It is interesting to compare this statement with the more posituve outlook provided by that of the equvalent Ametican Wind Energy Assocagton
"Tbe power avaulabse from tbe undd ws afunctorn of tbe CUBE of the wend speed, whech
means that, all other shangs burng equal, a turbrne at a ste mith 5 mst wimds will produce
 good whad resourve assessment and situgg to critual

In generah wonds exceeding 5 mar (17 mpb) are requarel for cost-ffectuse appitathon of small
 applicatyons that ane not grid-comnected, of confse, these requarvments may haty, depending on the otber power aiternchtes avallable ami therr costs "

As the power avalable in the wind is proportional to the cube of the wind speed there whll contunue to be pressure to develop the most windy stes first The effect on the overall price of electricty generated from the wnd is however not so directly propottional, as the following graph illustrates for a recent 600 kW machune

Gtaph 7.1 Relationsiup of cost of electricity to windspeed

Source VESTAS A/S, 2001

Thus it wrill be site specific factors and planning concerns that wall be the deciding factor the the location and scale of prind development Such site factors will include 1ssucs that ate dufficult to assess at a lecal, let alone a regional level, and are often only uncovered following detaled physical invesugations and negotanons by potental developets Examples of these incladea

- Microclimate effects,
- Site ground conditons,
- Access toad factors
- Ptoxumity to grid connecton, and
- The willingness of the landowner to lease land for development

Each of these can have significant impact on the development costs of a project and may well tup the balance for economuc feasibulte towards lower wind speed sates

Energy Crops
The energy crop resoutce is constraned by the limited budget avalable for planting and capital grants If all projects were fully supported, a very large increase in the deliverable resource may be avallable and this resource would be in a position to supply up to 5% of the Regron's electricity consumption

Thus would involve the plantang of energy crops on a total of 7% of the total agnocultural area of the region, and is unlikely to be physically avalable by 2010 However, with incteased policy attention appled to tural development followng the collapse of UK agncultute in 2001, the contributon to employment and communty programs that alternatue land uses can make is lihely to be increasingly recognused and valued

Nemwork constrants

Without a resolunon of the network connectan 1ssues, only a quarter of the deliverable resource could be connected. This is particularly serious for whad energy developments as the majonty of the best tesource is located in areas of sevete networlt constraint

Canclusions

Determining the delrverable resource for the region necessitates the application of a sernes of "constraunts' on the theoretucal resource avalable Whulst many of these may seem to grve a negative message, they are an important factor in understanding the extent of a realisuc estumate of the resource that could be developed

Two addronal factots that will increase total resource that is deliverable ate technology imptovernents and farmuanty

Advances in the effiriency and cost of technologies are likely to occut, zbove those already accounted for in the calculatons Thus is possible in all technology areas, and the pace of development of renewable energy world-wide could bring these to the market at an earler than expected

Famulanty with new technologes can merease the general level of acceptance and reduce the severnty of many of the constraints that have been detalled in this study The vamous partues to a development can feel this effect in different ways

- Planning Authonaes and Local Residents

Studies of a number of sutes have reported that wind turbines have a far higher acceptance level following constructoon A good example of this is the recently completed single large turbine at Swaffham in Suffolk This is a site within 500 m of a residental area of the town The high level of concern expressed by many residents has been significantly reduced following the erection of the turbine, and proposals with broad support are advanced for a second machune

- Project Developers and Financiers

The successful mplementation of NET'A, the Renewables Obligation and the Climate Change Levy, followed by a period of stablity in the market would lead to a mote certarn preture as to prices for electucty and contracts for supply offered This would in tum reassure those investing in the project of its long term viablity and help to reduce the cost of finance

- Distribution Network Operators

The serious concerns of the electncity network operators with respect to the abilutv of ther networks to accept hugh levels of embedded generation may not be realised in practice, particularly if a more active control methodology can be developed

The effect of familanty and a stable economic and polisy environment should not be underestrinated It 18 only necessary to refer to those countries that have embraced renewable electricity genctation in tecent yeats to sec an illustration of the signuficant growth rates ate possible

8

8.1
8.2

Conclusions and Targets

Relntonship Between Delverable Resource and Turgets

The key objectuves of this study is to detemme the extent to whuch the Region may be able to contribute to national targets for renewable eloctnaty However, $1 t$ is anncipated that development targets will be set for the Region once natoonwide resource assessments have been completed

In order to understand the impact of such targets for the Region, it is valuable to invesugate methods that might be appropriate for settong targets from a regronal perspective

Three methods have been des eloped to illustrate this comparison

- Reflecong the natonal development patterns expected
- Based on a probability ratug for the level of development of each technolvg in the omeframe considered
- A development led approach, with technology components shown aganst therr likely development progtess

Each of these approaches is detaled in the sectoons that follow and the qualitative judgernents that might be made in their application are described

National Development Patterns

The UK Government has set out in tecent consultation the resultz of analysis undertaken by the ETSU for the DTI Thus work preducts the expected technologs mux that will deliver the natuonal target of 10% of electnaty supply from renewable electricuty by 2010 The technology mux is presented under three development scenatios

- Trends continued, that represents the hastoncal development of renewable energy technologres in the UK,
- High wind, that envisages a signuficant acceleration of exploitaton of the whin resource, and
- Constraned wind, in which testrictons on the development of wind energy are compensated by addutonal development of energy crops

The kev differences in the technology mixes proposed are illustrated in Figure 8.1 below

These technology mixes can be ustd to develop a view of how the preducted natoonal development of renewable generanng technology may be reflected at a regional basis This regronal predicted resource could subsequently be compared to the deliverable resource calculated in this study It is then possible to determine a regional predictive resource target. For each technolog area, this target is defined as the smaller of the predicted resource and the deliverable resource Tables 81 to 83 llustrate this calculation for each of the three scenamos (Ttends contnued, Hugh wind, and Wind constrauned)

Cable 8.1. Predictuve Resource Target. Trends Conunued Scenaro

Trends Contmued	Predicted Generation Mix Consumption Scenario			Deliverable Resource		
				Total	As UK M1x	
	Gtowth	E	rgy		Growth	Energy
	Contenued GWh		Wht		Contonued	Efyucıent
Onshore Wind	21\%	630	548	1,345	630	548
Energy Crops	5\%	150	131	67	67	67
Waste	16\%	480	418	282	282	282
Landfill gas	16\%	480	418	398	398	398
Other biomass	5\%	150	131	95	95	95
Other	3\%	90	78	11	11	11
Small hydro	1\%	30	26	4	4	4
subtotal	67\%	2,010	1,750	2,201	1,486	1,405
Offshore Wind	13\%	390	339	0	0	0
Exisung	20\%	600	522	792	792	792
Total	100\%	3,000	2,611	2,993	2,278	2,196
					76%	84\%

Table 8.2. Predictive Resource Targes, High wind Scenamo

High Wind	Predicted Generation Mix Consumption Scenaro					
				Deliverable Resoutce Total As UK Mix		
	Growth	Enetgy			Growth	Energy
	Contrnued GWh	Efficient GWh			Contanued	Efficient
Onshore Wind	26\%	780	679	1,345	780	679
Energy Crops	3\%	90	78	67	67	67
Waste	13\%	390	339	282	282	282
Landfill gas	13\%	390	339	398	390	339
Other blomass	3\%	90	78	95	90	78
Other	3%	90	78	11	11	11
Small hydro	1\%	30	26	4	4	4
subtotal	62\%	1,860	1,619	2,201	1,624	1,461
Offshore Wind	18\%	540	470	0	0	0
Existng	20\%	600	522	792	792	792
Total	100\%	3,000	2,611	2,993	2,416	2,252
					81\%	86\%

Wind Constrained	Predicted Generation Mrx Consumptoon Scenano			Deliverable Resource		
				Total	As UK Mux	
	Growth		rgy		Growth	Energy
	Contmued GWh		cient		Contnued	Efficient
Onshore Wind	13\%	390	339	1,345	390	339
Energy Crops	16\%	480	418	67	67	67
Waste	17\%	510	444	282	282	282
Landfill gas	17\%	510	444	398	510	444
Other bromass	5\%	150	131	95	95	131
Other	3\%	90	78	11	11	11
Small hydro	1\%	30	26	4	4	4
subtotal	72\%	2,160	1,880	2,201	1,359	1,278
Offshore Wind	8\%	240	209	0	0	0
Exasting	20\%	600	522	792	792	792
Total	100\%	3,000	2,611	2,993	2,150	2,069
					72%	79\%

The predictive target generation illustrated in Tables $81-83$ can subsequently be compared to the two estamates of electuraty consumption for 2010 'This comparison is ilustrated in Table 84

Iable 8.4. Proportoon of supply tepresented by predictue gentration

	Electraty Consumption Scenario	
UK Technology mux	Contimued Growth	Energy Efficiency
Trends Contanue	76%	84%
High Wind	81%	86%
Wind Constraned	72%	79%

The key factor to note in Table 84 is the reduced contabuton that the renewable generatuon could be expected to make, compared to the $10 \%-11 \%$ that has been defined as deburetable in this report Thus is pmornarly a result of three main factors

- The West Midlands already generates over a quarter of the proposed natonal tenewable tatget from tenewable sources,
- The Region is not in a positon to atulise any of the UK's sigrificant offshore wind resource, and
- The level of development of onshore wind turbines is constrained as the region could not be expected to support more than the national mux of this resource.

These factors may therefore form a reason for setting renewable energy targets for the region at a level below the natonal 10% target The level of target could be selected from Table 84, depending on the scenarno for technology max and energy consumption profile thought to be the most realistac

8.3

Probability Ratings

Thus approach sets out to define the expected probablity of each technology in being developed an the period to 2010 Thas assessment is based on a sconing technique that addresses four principal factors that are considered to impact on the abllty of the tochnology to contrbute to the targets. For each of these factors a score is denved in the ange of $1-3$, depending on the chatactenstuts of the resource as detalled below

- The techncal stage of development of the technology

$$
\begin{array}{ll}
1 & \text { Demonstraton plant only } \\
2 & \text { Pllot scale plants operational } \\
3 & \text { Mature technology }
\end{array}
$$

- The ability of development companes, manufactures and suppliers to rase finance, invest, build, mantain and operate the technology

1 Fledgling - keen indinduals and small companies with litde experience
2 Small companies with experience but limuted abluty to tackle large propects
3 Medium and large companues with abilites and purchasing power necessary for latge projects

* The familanty of the trechrology in the region, assessed as the number of simulat installatons already operatang

1 No examples in regron
2 More than one example in tegion
3 More than five example in regon

- Assessment of the likelihood of planning permission and other consents beng granted

1 Very difficult, organised opposition certain
2 Moderate, organsed oppositon possible
3 Uncomplicated and unlikely to be any organised opposition

Table 85 Probability Ratngs Approach

Hind	Lurne (Probuble Smell	Curment How Cwh CJWh								魚c\|ual G14th
		0	1345	3	2	1	1	7	51\%	785
		0	0	2	1	2	2	7		0
Vromess	Enoryy mops	0	* ${ }^{\text {c }}$	2	1	1	3	7	56%	39
	- mancultural	0	25	2	1	1	2	6	50%	13
	Foredry	0	41	2	1	1	3	7	50\%	24
	Wantel	502	212	3	3	3	1	10	83x	737
	Sonwoge gas	47	25	3	3	3	3	12	100\%	76
	LandFlil get	240	397	3	2	3	3	11	92\%	万04
Soler Hyclio	PV	0	11	9	1	2	3	5	75\%	*
	Mlcradurnall	3	4	3	1	2	3	\%	75\%	E
		7.2	2202							2.241

The calculation of the probability of development enables the estmaton of an actual developed resource of $2,291 \mathrm{GWh}$ This equates to 76% of the contmued growth electricity consumption case, and 87% of the energy efficiency consumpton case

Thus one of these figures could form the basss of a target for the development of renewable generation in the regron. However, this approach depends crucally on the need to subpectuvely place tatings on aspects of the technologies, and thus these ratugs, and the deaved probablity of development, are open to debate However a more significant factor may be that the pudgernents expressed in the allocation of ratugs may be construed as policy statements and thus may influence development decisions

8.4

Development Lead
An alternative method is to set tatgets in ditect reference to the most probable level of derelopment that could be achueved In this case the level of probability 15 sumply dernved by expert judgement of the nearness to the technology areas to full scale commercial realisation The relationshup in Table 8.6 below may be a first approximation

Table 8.6. Development Potentals

Status	Sector	Delrverable renource GWh
Alrady developed	Existng generation	792
Closest to full development	Planned generation	568
	Sewage gas	29
	Landfill gas	130
	Enctigy from waste	0
	Enersy crops	67
	Agricultural tesidues	7
	Forestry residues	41
	Small hydio	4
	PV	11
Furthest from full development	Wind	1,345

If this data is presented in a graphical form as in Figite 8.2 and 83 below, thas gives a clear indication of the effect of different targets depending on the level of electricity consumpton assumed for 2010

D:-wil2. Renewable Generation and Targets wuth Contunued Growth in Electricity Consumption

F1- 83 Rencwable Generation and Targets with an Energy Efficiency Consumption Scenario

Contributhon to Renewable Electrcity Tatgets from the West Midlands
The likelihood of the development described in the deliverable resource must be assessed when evaluatung targets fot development by 2010 These can be assessed by probabilites or by histoncal and projected trends

Probability assessments can be very subjectrve, and must attempt a series of fudgements that have the potental to lead to signuficant error Histoncal information can be valuable, as it recognises the skill base that exists in the industry and the familaty local organisatoons and planning authorites bave with the technology. However, projected trends from this data can be misleading, as the commeraal environment for the next decade is very diffetent from that govemed by NFFO during the 1990's

The Government has indicated that 10% of electricity supply is to come from renewable generation on a nation-wide basis and this could form a target for the West Mdlands Thus would have the intention of sending signals to potental profect developers, planning authonties, financiers and the general public that the Govetnment is fully commutted to significant progress towards sustainable development aims However, to progress towards thus target, it would have to be accepted that a signsficant development in wind and biomass technologies would be necessary at a level unknown in the UK previously Not that this would be physically or technucally mpossible - Denmark, Germany and Span have all achueved growth rates in the order of what will be requred - but realistacally thus will be agreat challenge

Progress towards any tatget is likely to be slow in the short term, mannly due to the uncertannes in the commerctal framework. Although NETA has been implemented, it is under review and it is likely to be spring 2002 before the proposed Renewables Obligation is implemented. Following a period of stabilisation, it would be unrealistic to expect significant development based on these measures untul 2003 With the lead-dme of $2-4$ years for most major projects and up to 6 years for the establishment of energy crops, it is unlikely that much new generaton would be starting to be built untal 2005.

However, projects already planned or with NFFO contracts are likety to be much nearer to development This is partcularly the case as the Government has indicated that these contracts may now be transferable between sites, allowing for some planning obstacles to be removed In addition, it is interesung to note that if these are combined with exusung projects then over 48% of 2005 estumated consumpton could be suppled by renewables in that yeat

Project Recommendatorns
The following recommendations have been developed in the course of this study

- Speafic polucics and gudance on the explottation of renewable energy resources should be included in all strategic and local plans Thus stud, has shown that renewable enetgy is an 1ssue for all authorttes, whether arban or ruraf, as development througtiout the Region of all technologies wall be required of the environmental benefits are to be realised
- Regronal acturites should assist central government in conunuing to support renewable energy development through mechanisms such as the proposed Renewables Obligation and by forms of subsidy where appropuate The inportance of pre-commercial developments cannot be stressed enough as they have a vital role in buildng market and public confidence in change Additionally, long tetm stabultv in support mechanusms is required to enable commertial propects to ralse finance from any source
- Small scale propects face partucular financial batriers to development under the anticipated market condatoons However, this twpe of project can be valuable in rassing awareness of many types of technologies at a locat scale, and can sumulate communuty involvement in sustanable development Specafic support measutes should be developed that recognase these important toles
- The electricity distribution network needs to be developed to recogruse that in future it will have to be operated in a way that allows for the benefits of embedded generation to be delivered Reinfortement of lines and other transmission equipment will be required to enable many renewable generazors to be connected
- The tume frame of the development of many renewable energy technology projects can be up to 5-6 yeats Thus, acton and support is tequired immedately if the 2010 targets are to be met, let alone the 2003 tatgets
* Many renewable energ) resources are well swted to the ditect delivery of heat to domestuc, commercial and industmal applications To the extent that they substutute for electrically generated heat, they could be argued to contribute drectly to the 2010 target They could also substutute for other fossil fuel combustion and help combat global warming in that way Therefore, it is recommended that regional assessments are also carred out to research the potentalal of these resources and of ngorous energy efficiency measures to meet the UK's clmate change and sustanability objectives

Final Conclusions
The phisical nature of the regron dictates which renewable energy technologies will be sutable for electricity generaton. Thus, in the West Midlands, technologies that tap the siguficant energy resource at sea (ndal, wave and offshore wnds) are not approptate In adduton, the geological structure of the region is such that temperatures are not sufficiently elevated neat to the sutface to allow the use of geothermal heat Whulst parts of the Region do have signuficant tainfall totak, the landscape is generally low lying, and thus not particulatly surted to large scale hydro electuc development Development will therefore be limuted to those technologres that uthse wind, blomass (Including energy crops and wastes), solar energy and tunning water

The physical tesoutce exists in the Wext Midlands to generate many ornes the Region's current electicity consumption. Even when constrained by what is considered economically viable and envuronmentally acteptable, a sigruficant resource is soll available.

Finally, it is recommended that the implicatons of the Govemment's renewable energy policy is presented for discussion and debate This debate should include views from not only representataves from the regronal and local stratege planning authoutues, but also might include views from interested pacnes and organisations that teptesent wider commurity viewpoints Thus may be most effectrvely achueved by a conference of formen that may attempt to arrive at a consensus viewponit. This consensus on the opportunues and limuts of development, together with the resources assessment information contained in thes report will provide the strategic
framework for plan policies that can assess renewable generation proposals at a local level, including the idenafication of sustable stites for development

Appendix A

Calculations for Each Technology

Summary of the principal of the resource assessments

For each of the renewable energy technologres considered in tus study (Chapter 3) the resource has been calculated on 3 'levels' - theoretcal, economic and delverable.

Theoretical Resource

The tesource that is techmically accessible and limted only by reasonable phvsical constrants The tochnically accessible resource can be expected to merease with tume and is calculated here on the basis of existing technology or that which is Lukely to be developed before 2010

Есолотиic Resource

The resource that is economically vyable within the proposed commercal and regulator\} framework 'The 'proposed' framework includes the introduction of the Renewables Obligation, the New Electncty Trading Arrangements and the Climate Cbange Levy

Deliverable Resource

The resource that can be harnessed after taking into account both economic constrannts and the public policy framework. The policy framework includes environmental protection, development control, land use and waste management practuces

The wind, solar and hydro resource 18 calculated in terms of installed capacity (MW) For the purposes of comparing the resource with the Respon's electricty consumptorn, it is helpful to 'convert' this installed capacity into an expected annual electuctry yield (GWh) This is determined by the avalability of the resource and the generating plant, and is collectively descrobed by the 'load factor' This is equivalent to the proportion of the yeat when the generatot is operatang at full capacty

For biomass plant the load factor 1 s much hugher since the resource (the fuel) is assumed to be a steady supply and the avaluablity only depends on the plant tiself

All the load factots used in the resource calculations are indicated in Table $A 1$

Table A1 Assumed Load Factors

Technology	Laad factor	Anntal yreld (GWh per MW installed)	Comment
Wind (latge scale)	0.25	2190	Thus estomate is derived from the actual operatang performance of wind turbines and takes into account climatic varnatrons, mechanical and electrical avalabiluty, wake losses and dectrical losses
Wind (small-scale)	020	2175	Micro-turbines generally require a higher wind speed regme to generate at fuil power and so a lower load factor of 020 is assurned
Energy crops, Agricultural residues, Forestry residues, Wastes, sewage gas	09	7884	Biomass projects of these types generally can incorporate an element of storage or are contunuouslv avaulable and thus the phvacal avaulabulty of the energy conversion plant is the only constrant on operanoni.
Landfill gas	095	8322	Plant avalability is proving very good with modern engines
Solar (PV)	00856	0750	In the UK a PV amay will produce approximatelv 750 kWh per kW/ installed per มกาum
Hydro (micro/small)	054	4730	The load factor depends promanly on the ratuo of the turbone design flow to the mean river flow For a design flow of 05 then the average load factor is 054 [ETSU, 1996]

Key Assumptions of the assessment

As outhed above, the resource assessment for all technologres requres the determmaton of a seues of assumptions The mapoaty of which could sugnficantly alter the overall resource that is shown to be avalable Any assessment of thas type must make such decisions and for thus assessment these generally follow the pracuce used in other, nation wide, resource assessments where appropate.

However, it is recogrused that there is the potental for significant debate as to the detalls of each assumption Indeed this is to be encouraged in order to progress the understanding of the assues to be faced in the Region

Table A2 outhes the key assumptons in this sub-regonal assessment and table A3 presents the regon wide resource assessment
Table A2. Resource Assumptons

	Wind (large)	$\begin{aligned} & \text { Wind } \\ & \text { (small) } \end{aligned}$	Energy crop:	Agricultural residues	Forestry residucs	Waste	Sewage gas	Landfill gas	PV	Hydro
THEORETICAL RESOURCE										
Kcy 	Al] land areas avaulable for development with wind speert > $3 \mathrm{~ms}{ }^{1}$	10% of agrucultural holdings have sultable off grod upplicaton5	All set assde and 10% of curterte arable converted	All manure from housed stock availeble	Estumated 450 $\mathrm{kg} / \mathrm{ha}$ woodland avallable ansuaily	All combustable municipal, commetchal and undustral waste avaulable	All scwage works are surtable	All landfill attes can be developed	36% of domestic, and 80% of commercial, properves in 2010 are fitted	All exstung weir sters arte uted
ECONOMIT RESOURCE										
Key vaitables	5ı7e, Wind spend	Application, Wind speed	Trusport + fuel costs	Transport costs, proportion of food processing ressdues	Transport + fuel costs	Waste volumes	Poppulation serviced	Site size	Value as a bullding materlal	Head, flow rate, existing civil structure
Kcy nsaumpuone	Wind speed Potental >6 ms^{1} l'tobable > 7 mss ${ }^{1}$	More expensive than a duesel generator (not economic)	Onl\} for sutes whth capital grants and planting subsidy	Only if includes food processing or other orgatile residues	Ond that avaulable from felling etc $\{200$ kg/ha woodland	Domestec sector only	Sewage works serving populations above 90,000	5 ites over 500000 tornes capacity	Replacement for 'prestigious affice claddings	$\begin{aligned} & >25 \mathrm{~kW}, \text { Head } \\ & >2 \mathrm{~m} \end{aligned}$
DELVVERABLE RESOURCE										
Key ateumption:	Development constrasned by exusung land use, designated areat and plarnung poley	All economic resource delivered	Ali econotmic te50urce dehvered	All ecronme resource dellivered	All econorric rescurce delivered	Development may be constraned by waste tecycling polpers	All economut delivered	All economic delivered	Potentallv large growth in domestac sector even thougsh not economic	All conomic delivered

Note symbol 'n' denotes neglogble (less than half the final digtt)
West Midlands Region

Curram Oenorallon (BWh)	Manned Installed capacily (inc NFFO oontractio \& DTIFjolt Trial) (OWh)	Now Generation (GWh)
		1345
	11	67 7
502	282	0
47		29
240	267	130
01	0	11
3	0.2	4
712	sets	1,854*
28113	26113	26113
30000	30000	30000
3.0\%	2\%\%	63\%
2.6\%	10\%	54\%

Wind (Large-Scale)

The wind resource is determined by 3 key factors

- mind speed
- avalable land area
- turbine technology (suze, avalability etc)

The wind speed is derived from the NOABL data set ${ }^{15}$ This provides an estumate of the annual mean wind speed (AMWS) for every square kulometre in the UK The information was presented in $05 \mathrm{~m}^{1}$ wind speed 'bins' from $35 \mathrm{~m}^{\text {t }}$ to 95 m ${ }^{1}$, for a selectron of heights Data was selected for a height of 45 m above ground level

The land area avalable for development is calculated separately for the theoretical, economic and deliverable resource (below), based on a number of practical, planning and economuc assumptons

For all three levels of the resource calculation an installed caparty of $9 \mathrm{MW} / \mathrm{km}^{2}{ }_{18}$ assumed 'This is the same 'density' as used in the DTI study [DTI, 1999a], but based on the assumpton that it would be composed of $6 \times 15 \mathrm{MW}$ turbines, tather than $15 \times 600 \mathrm{~kW}$ machines, to reflect the trend towards larger turbine sizes

Theoretical Resource

All land is avalable for development with the excepton of urban areas

[^14]
Econome Resource

The economic viabluty of a turbme is strongly dependent on the wind speed since the power is propottional to the wind speed cubed ${ }^{16}$ Annual mean wind speeds for the West Midlands Regron are indicated in Figare A1

The economic resource is calculated based on different assumptions on financial vabillty

- The Potential economic resource assumes that wind power development is only economically wable on land with an AMWS equal to or greater than $6 \mathrm{~ms}^{-1}$ Whulst this is lower than that used in the recent study carried out by the Britash Wind Energy Association [BWEA, 2000], local carcurnstances and improvernents in the technology are assumed to allow propects to be constructed in these areas It is also possible to envisage circumstances where areas with wind speeds below 6 ms ${ }^{1}$ may be attractive to certain developers, however these projects are not expected to significantly affect the total capacity
- The Probable economuc scenario assumes that uncertaintues in the marlet place will continue to constran development over the penod, and thus onls sites with wind speeds in excess of $7 \mathrm{~ms}^{-1}$ will be vaable

The BWEA calculate that the cost of electricity, in the minimum wind speed band, will be $45 \mathrm{p} / \mathrm{k}$ wh using a discount rate of 10% and "typical industry data fot capital costs" Capital costs typically account for 75 to 90% of the total cost and, according to the DTI [DTI, 1999a], will decrease to 75% of 1996 costs by 2010 if the histonc tend is connunued While this looks to be economic under the proposed Renewables Obligation (see chapter 4) wind power will be disadvantaged by the New Electricity Trading Atrangements because of its variable and unpredictable output

[^15]

Note that previous studies [ETSU, 1997a] included a tequitement for 'clustering' of wind turbines. The argument being that wind turbines 'need to be grouped together so that they are financtally and practucally viable and to mumuse their environmental impact' With regard to the former porns, it was decided that single tutbine developments will be viable and there is already evidence of this th the UK with a number of existing NFFO contracts for single turbines

Deliverable Resoutce

Further to the economic constraints, מird power developments will be restricted by exisung land use and planning designations 'These are likely to be a) controversial and b) subject to planing policy on a local level. However, sorne broad planning constraunts have been adentified. It is assumed that wind power development will not occur in the following ateas

1 Urban areas, plus 500 m buffer

11
Majot roads (motorways and A roads), plus 100 m buffer

Arport exclusion zones

This is uruque to each airport As an approxumaion a crrcular exclusion zone of raduus 6 km was used for major civil and milutary arports (3 km for muor civil/commercial arrports and 1 km for helports)

Protected areas

- Natonal Parks, plus 1500 m buffer
- Areas of Outstanding Natural Beauty (AONB)
- Natuonal Natute Reserves (NNR)
- Spectal Ptotection Ateas (SPA)
- Special areas of Conservator (SAC)
- Sites of Special Scientific Interest (SSSI)
- Special Landscape Areas (SLA)
- Areas of Great Landscape Value (AGLV)'
- Ramsar Sites
- Ancient woodland
- Green Belt

Woodland - this was excluded on a percentage bass 1 e for a 'cell' containing 10% woodland by land area the debverable resource would be reduced accordingly

Plannung constraints are discussed in furthet detall in chapter 5 but it is noted that, according to the DTI [DII, 1999a] 'there may be scope for sitng some turbines in these [the listed protecton] areas but each case would ment special consideration, furthermote Natronal Plannung Policy Gudance DETR, 1993) states that 'particular care should be taken, in assessing proposals for developing renewable energy projects in National Parks, Areas of Outstanding Natural Beauty, the Broads and Sites of Special Scientufic Interest' Simular considerations anse in areas of atchacological or histonc importance Thus whle natuonal planning gudance does not explently preelude wind power development from any form of designation, it is believed that such developments will not be the norm and will not signuficantly affect the resoutce calculation

[^16]Table A4 Theoretical, Econome and Deliverable Wind Resource

	Land acea	Number of turbines	Installed capacity MW	Antual Yield GWh
Theoretucal	11,440	68,640	102,960	225,482
Economic Potental $-\quad$ Probable	9,831	58,985	88,477	193,764
Deliverable	639	3,834	5,751	12,595
Potential Probable	2,232	13,394	20,091	44,000

Wind (Small-Scale)

Aside from the commercial development of latge wind turbines connected to the electucity nerwork, there is a small but growng market for micto-wind turbines, ranging in size from 100 W to 10 kW Applications are likely to range from off gotd homes, to low power applications for agnculture and wind pumping

Theoretical resource

To calculate the regional resource it is assumed that the number of remote homes that are off grid is negligible in the West Midlands (the off gnd market has stmularly bcen omitted from the solar resource calculation) Furthermore, it is assumed that mochancal wind pumpt will be used in preference to coupling the rotor to a submersible electric pump Although the latter does allow the generator to be located in the best wind postaon and not necessamly over the pump, mechanical wind pumps are considerably cheaper

Consequently, the theoretacal resource is primanly low power applications in agnicultural precrises Wind turbines can be of most use in remote parts of a farm where the cost of cables from the distubution network could be prohubitue Typical applications are electuc livestock fencing, lightigg or small electionit systems for control or montonng equipment

Assumptions

(i) Meto-wind gentrators are installed on 25% of all agticultural holdings (regron total 18,800 holdings in 2000) [DEFRA, 2001]
(ii) The average capacity of genetatots is 200 W

This the theocetral resource $=025 \times$ number of agncultural holdings $\times 02 \mathrm{~kW}$

$$
=025 \times 18,800 \times 02 \mathrm{~kW} \quad=940 \mathrm{~kW}
$$

With a load factot of 020 , thus cottesponds to an expected annual yneld of 16 GWh

Economic Resource

In thost instances diesel generators are used for small power generation on farms The cconombe resource can therefore be calculated by companng the cost with that of dicsel generation (as opposed to gnd-supplied electricity) For diesel generators the fuel and operating costs are estumated to be approximately 10 $\mathrm{p} / \mathrm{kWh}$ The difference in capital cost for a 200 W wind generator, as opposed to diesel is around $£ 500$ If the wind genetator has an average load factor of 0.20 then it can be expected to produce 350 kWh of electricity per year, thus saving $£ 35$ on fuel and operatang costs This results in a payback period greater around 14 years Although only a 'ballparle' calculation it is assumed that none of the theorencal resource will be economic, especially considerng that wind generators are typically sold with just a 2 year warranty There is probably scope for a large reduction in costs if small wind turbines were to be mass produced but this is difficult to foresee

Deliverable Resource

This is also deemed to be zero Some of systems are likely to be instalied for non economic teasons but the contwbuton to the tegional electraty demand will be neghgrble

Theoreacal Resource

The resource avalable from energy ctops 18 promarlly a functon of two factors the type of crop grown and the atea of land given over to growing the crop

Whrist agriculture in the UK is in a state of rapid change due to the removal of subsidises based on levels of producton, the majonty of farm land area will contunue to be used to grow food for the foreseeable future However, farm tncomes will be severely stretched and opportuanes for diversification whll be welcomed by many businesses Two key categores of land are expected to be of particular interest

- Set aside land Registered land in this categoty recerves an area payment for not growing food crops, and addutanal payments for other uses are permitted
- Arable land Commodity market pnces, such as that for wheat, are likely to remain at world wide levels with the mplementation of GATT world trade talks Only a propotton will be avatlable for switching to energy crops

Thus the area avallable to energy crops $=$ All set aside land $+10 \%$ of all acable land

A number of crops types have been tested in the UK for their sutabulty as energy crops, but those at the most advanced state of development are the grass Miscanthus and Willow, grown as short rotatoon coppice (SRC) [DTI, 1999a] The expected yield of these crops will vary with ground conditions, soll types and climate actoss the region, with Miscanthus growing much mote favourably in the wetter, warmer west and south A first apptoxumatorn of the mux of these two crops is likely to be 60% SRC and 40% Miscanthus Yield of these crops are increasing with better understanding of crop management and the expected yields antucpated to be achevable by 2010 are $15 \mathrm{t} / \mathrm{ha}$ for SRC and $23 \mathrm{t} / \mathrm{ha}$ for Miscanthus (expressed as dry tonnes) [DTI, 1999a, Forest of Mercia, 1999]

The calonfic value of both crops is smmar at 19 G]/dry tonne [DTI, 1999a]

Currently the conversion of encrgy crops to electricty is achieved by eather incmeration with energy tecoveted by a boiler and steam cycle, or by gasification with the produced gas ether used in a steam cycle or directly in a gas engine or gas turbine. Whilst gasificataon technologics not yet fully developed, they are expected to form the most likely generation toute in 2010 Theit main advantage over incineration technologies is the potental of higher clectucal conversion efficiencies, whth net efficiencies of 30% belies ed to be readily achrevable Plant avallability is estimated to be in the region of 90%

Thus the electncal energy potential of energy crops $=$

Dry welght of crop grown x calonfic value of crop x plant efficrency

The theoretical tesource, calculated using the 1999 MAFF Census data, plotted in Figure $A 2$ and based on the above assumpton equals 1417 GWh This equates to an installed capacity of approxamately $180 \mathrm{MW} /$

Ecomomic Resource

Currently it is not expected that energy crops generation systems could deliver electructy pneses at, or below, the $52-54 \mathrm{p} / \mathrm{L}$ Wh antucupated to be avallable However with the limited capital grants proposed in the Renewables Obligation and the MAFP planting grants avalable thas resource will become commercially vable

The Energy Crops Scheme, launched under the Govetmment's Englsh Rural Development Programme, will offer plantung grants of between $f_{1} 920$ and $£ 1,600$ per acre with the am of delivering $20-25,000 \mathrm{ha}$ of energy crops by 2007 MAFF , 2000b] Thus this level of planting will be the total avalable for cropprig in 2010 As the West Mdlands area accounts for 103% of all the agncultural land in England [MAFF, 2000c], a maxumum of 2,575 ha of land in the region can be expected to be planted for energy crops

At an average energy crop yield of 18.2 dry tonnes/ha ($06 \times 15+04 \times 23$), thes equates to an annual yield of enetgy crops of 46,865 dry tonnes and thus an electrical generation potental of
$46,865 \times 19 \times 03 \times 09=240,417 \mathrm{GJ}$, equivalent to 668 GWh

This equates to a total installed capacty of around 76 MW , and estamates of economic plant size suggest that this is undkely to be split between more than two plants in the regron

Deluverable Resouxce

There are not sprguficant factors that would limt the development of two 3-5 MWe plants in the region Thus the delverable resource is 668 GWh

Theoretical Resource

Many types of agncultural residues mav be avalable for energy recovery The total amount of residues generated by agmiculture may amount to 250 millon tonnes per annum [DOE, 1992], but a significant proportion of this is anmal dung that is dropped directly on to farm land A more realiste assessment makes the assumption that only dung from housed anmals may be avalable, and thus reduces the amount of all residues generated to around 60 million tonnes Cereal and other crop straw makes a significant contmbution to thus total, but in the West Mudlands the mapority of this material is not surplus and is utilised as animal bedding or directly incotporated into the soil

Most anumal manure, apart from some chucken lutters, has a lugh morsture content, making it generally difficult to bum in metneration plant Thus the most appropnate manner for recovenng energy is by anaerobic digestion Thus technology is technically well developed on many scales and has sugnuficant potential and attaction to the agricultural industry as part of integrated system to manage waste and recycle cuutrient and fibre to farmand

The theoretical resource consists of all anmal dung that can be collected whilst anmals are housed The assumptrons as to the manure genctatoon and time of year that common stock are housed are set out in Table A5 below

Table A5 Manure Arsing and Housng:Assumptons [Cannungton College. 1298]

	Manure ansumg (kg/day)			Proportion bowsed in summer
	Slury	Beddang	Totat	\%
Darry cattle	57	120	177	20
Beef cartle	35	30	65	0
Other cattle	10	15	25	0
Breeding prgs			12	80
Other pigs.	-	-	7	80
Laying fowl			011	100
Other fowl			008	100

It is assumed that all stock is house in winter, and the winter length is 180 days When introduced to an anaerobic digestion vessel, different manure types generate differung blogas yields However, the blogas generated is generally of a constant calonfic value of $20 \mathrm{MJ} / \mathrm{m}^{3}\left[\mathrm{DTI}_{3}\right.$ 1999a\}

Tiwe ill hogas yelds for different manure appes [Cannugton College. 1998]

	$\left(m^{3} / \text { ton } n e\right)$	(111)	Blogas yoeld
Daury cattle slumes	25		
Beef cattle slurries	25		
Other cattle slucries	25		
Darry cattle beddung	15		
Beef cattle bedding	15		
Othet cattle bedding	15		
Breeding plgs slurnes and bedding	26		
Other pygs slurrmes and bedding	26		
Laying fowl dropprigs and bedding	90		
Other fowl droppings and bedding	50		

It is anticipated that the biogas will be utilised in sparte igniton gas engines or gas turbmes, that are currently well developed for the purpose and can dellver gross electncal efficrencres of over 40% However, the need for a substantal level of parasitic loads (pumps etc) at bogas plants means that a good estumate of the net electncal efficsency is 30% Plant avaulabutty is assumed at 90%

Thus the electrical energy generated $=$

Manure ylelded x blogas yneld for that manure x calonfic value of brogas x
electrical efficiency of plant x plant avalabiluty

Using the 2001 DEFRA Agricultural Census data and the above assumptoons, the totil electrical energy avallable 15421 GWh Thus equates to apptoxamately 53 MW e
of mistalled capacity Generation potental from agricultural residues is shown in figure A3

Economic Resource

A recent detailed investugation of the economics of biogas plant in England [Cannington College, 1998] indicated that the anaerobic digestron of animal manure $1 s$ likely only to be commercially economic if a substantal proportion of food processing residues are also avallable This is because the deposal costs for these resudues can be recenved as a gate fee at the biogas installation. In this case a generation cost of ander $45 \mathrm{p} / \mathrm{kWh}$ may well be achuevable However, the scale of facibues that are installed has a signuficant effect on the cost of genetation, whth one study in 1996 patting the generaton cost for small farm scale plant as high as $59 \mathrm{p} / \mathrm{kWh}[E T S U, 1996$]

Thus it can be assumed that, in the absence of any direct government support, the only projects that will be economic by 2010 are those that wrll be able to attract food processing or other orgame residues for a substantal part of their through put Thus will therefore favour centralised AD plant Typically thes will melude a net generation capacty of over 1 MW and will source manure from $40-60$ farms withn a 5 km radus of the facilty A facility such as this would require 15,000 to 20,000 tonnes of food processing residues annually to make it viable

Approximately $1,200,000$ tonnes of biodegradable waste ate generated in the West Midlands and if 20% of this ansing was diverted to AD faciletes, a total of three 1 MWe plants could be supported Thus would equate to the utilisation of approximately 7% of anumal manure, which vould cesult in the generation of 45 GWh of electurcty

Deliverable Resource

There are very few constraints that would restuct the full development of the econornic resource, although the details of planning conditons are likely to cause some difficultues in specific cases Key concerns will centre on local transport 1ssues and odour control at plants It is antucipated that agreement on these issues an be dealt with in sensitve planning condinons Thus the detiverable resource is 25 GWh
$=+$

Theoretical Resource

The theoretical resource would utilise all the wood lands residues arising from felling and thanang operations in addution to residues from woodfuel plants and that arising from arborjcultural operations such as tree surgery This amounts to approximately 045 dry tonnes per year per hectare of woodland [DTI, 1999a, Forest of Metct, 1999] The calorific value of these residues is reasonable consistent at $19 \mathrm{GJ} /$ dry tonme

The conversion of forestry residues to electuaty $1 s$ achieved by either incineration Whth energy recovered by a bover and steam cycle, or by gatufication with the produced gas eather used in a steam cycle or dreetly in a gas engine or gas torbone

Whilst gasification technologies are not yet fully developed, they are expected to form the most likely genetaton toute in 2010 Their man advantage over incuneration technologres is the potental of higher electncal conversion efficiencies, with net efficiencies of 30% belicved to be readily achuevable Plant avalabiluty is estrmated to be in the regron of 90%.

Thus the electrical energy potental of forestry residues $=$

Dry weight of tesidues x calonfic value of resthues x plant efficiency x plant avallability

Using data on forestry ansing from the 'Region in Figutes' data [Natonal Statastics, 2001] and the above assumptons, the theoretical resources was calculated to be 92 GWh This equals to approximately 12 MW of installed capacity The full detalis of the calculatron are shown in Table $A 7$

Economuc Resoutce

Due to the diverse natute of atboricaltural operations, it is assumed that these will not be sufficiently relable for the development of forestry residue projects This reduces the quantry avalable to approximately 020 dry tonnes per annum per hectare of woodland Subsequently it is unlikely that few forestry projects will be wable unless they contribute to an energy crop projects In this circumstance all
residues collected can expect to be used, as they can make a signficant contabuton to the economuc vlability of these projects

Thus the economic tesource is 41 GWh per annum, and although thas equates to an installed capacity of atound $5 \mathrm{MW}_{c}$, it is antucipated that the forestry resource will be as additional fuel for energy crop schemes

Delverable Resoutce

There ate no signticant issues that would restrict full development of the economuc resource

Table A7. Forestry residues Theoretical Resource

	Theoretical Resource	Economic and Deliverable Resource
Woodland area (ha)	143,504	143,504
Residues avalable (t/yeat)	64,577	28,701
Ertergy nit tesiducs (GJ)	$1,226,955$	545,313
Electacal energy generated (G])	331,278	147,235
Electtraty generated (GWh)	92	41

Municipal, Commercial and Industrial Wastes

Theoretical Resource

Whaste ansing in the West Midlands Region are estumated at a total of 154 mullon tonnes, per annum, of which 102 mullion tonnes are of industalal and commercial otygr, 31 million tonnes from construction/demolition and 21 million tonnes from domesuc scources [WMLGA, 1999]

In calculating the theoretical resoutce it is assumed that the followers mex of waste management options will be implemented between 2000 and 2010
ande Management Optons [WMLGA, 1999, Environment Agency, $1998,0 \mathrm{ONS}, 2000]$

Waste type	Landfilled	Recycled	Energy recovered
Lndustrial \& commercial	40%	30%	30%
Construction \& demohiton	75%	25%	0%
Domestuc	40%	20%	40%

'Therefore the waste avalable for enetgy tecovery in the West Madlands is 31 mallion tonnes (industral $\&$ commercial) and 08 million tonnes (domestic) The calonfic value of these wastes 18 assumed to be, on average, $16 \mathrm{GJ} /$ tonne and 13 GJ/tonne respectuvely [WMLGA, 1999], gying a total energy content of 60 mellion GJ The details of the calculation are shown in Table A9

The electracal conversion efticiency of curtent man butn incinerataon is in the order of 20%, but this figure is expected to increase sugnificantlv with the implementation of new technology A net effirency of 30% is assurned for thus study Plant avalabilty is estumated to be 90%

Thus

$$
\text { Theorencal resource } \quad \begin{aligned}
& =60 \times 10^{6} \times 03 \times 09 \mathrm{GJ} \\
& =162 \times 10^{6} \mathrm{GJ}
\end{aligned}
$$

This equates to a total theoreacal resource of 4,504 GWh and an estumated installed capacity of $571 \mathrm{MW}_{e}$

Economic Resource

Energy from waste plant is capital intensive plant, and requies a guaranteed waste deluvery for full operaton Thus it is assumed that the plant developed will only serve the domestic sector, as it is in this area that long term waste management contracts are avalable (up to 20 years) 'This reduces the waste avallable for energy recovers to 08 mullion t / Pa

The economic resource is thus $823 \mathrm{GW} / \mathrm{h}$, or an installed capacity of 104 MW e

Table AS. Wastes - Theoremal Resource

	West Midlands Region	Staffordshure	Shropshire	Herefordahuse	Worcestershire	West Midlands	Warwuck shire
W aste Ãsimineq (tonncs P a)							
Industrtal/Commercral	10,224,000	2,720,000	1,490,000	864,000	864,000	4,450,000	700,006
Domestut	2,111,000	464,000	186000	271000	271000	1,000,000	190,000
Construction/Demolution	3073,290	1290	572,000	700,000	700,000	1,500,000	300000
Total	15,408,290	3,1苂,290	2,240,000	1,1435,000	1, 135,000	1,950,000	1,190,000
7ater avalable for thatrys							
reconery (tonnes p a)							
Industrial/Commeraal	30677200	816,000	447,000	259,200	259,200	1,335,000	210,000
Domentic	\$44400)	185600	74400	104.400	t06, 400	$4(00000$	76,1000
Construetuon/Demolition							
	3, 11,600	1,001,600	521,400	367,600	367,600	1,735,000	236,000
Electricty tenerated (G)	$16,214,148$	4,640, 640	2,435,760	1,6(96, ${ }^{\text {a }}$, 20	1,466,920	7, 9.90 .400	1,304,400
Electididy gener med							
(GWh)	4504	1,289	677	463	463	2,213	362

Deliverable Resource

Currently there is approximately 64 NWe of installed waste plant ins the West Mdlands region Plants under construction and those at a late stage of planning account for another 36 MWe of capacsty Together all these plants will menerate $1,537$ million tonnes of waste P a (Table $A 10)$ whech is equvalent to 73% of the total domestuc waste ansings In the current Waste Strategy for England and Wales [DETR, 2000 d], the government has set a target of 15% of wastes to be recovered whth materials and energy recovery Even if waste volumes increase as predicted at 3% per annum to 30 milion tonnes pa of domestuc waste by 2010 , the anstalled and planned capacits, will be able to recover energy from over 50% Thus far exceeds the Governments tatgets for recyclung and so $1 t$ is considered that addutanal capacity will not be deliverable Consequently the deliverable resource, equvalent to current and planned enetgy from waste plant, is 99 MW or 784 GWh $\mathrm{P}^{\text {a }}$

Table Alo. Wastes Delluerable Resource

Oparatin!

|Plannedfundar conetrucition

Theoretacal Resoutce

Anaerobse digestion of sewage can be used to generate approxamately 800 k Wh of electricity per dry tonne of sludge digested [ETSU, 1993] and, on average, each person produces 25 kg of dry sewage sludge per snoum [ETSU, 1994b] Consequently for the West Midiands, with a popilation of 533 million [ONS, 2000], the total amount of sludge avallable for digeston is 133,250 tonnes per annum Thus the Theoreacal Resource can be calculated is follows

$$
\begin{aligned}
\text { Resource } & =800(\mathrm{kWh}) \times 0025\left(\mathrm{t} / \text { person) } \times 533 \times 10^{6}\right. \text { (persons) } \\
& =106,600,000 \mathrm{kWh} \\
& =1066 \mathrm{GWh}
\end{aligned}
$$

It should be noted that the majonty of electricity generated by AD facilites of sewage works is used in the operation of these works, and it is very rare for these sites to export electricity to the grid

Economic Resource

Currenth it has only proved economic to installed anaerobic dugestion faclutes at sewage works that serve major urban areas and thes stuation $1 \$$ consideted unlikely to change For the purposes of this calculation it is assumed that major utban areas constutes distncts, authontues or mettopolitan areas with a population over 90,000 Thas limets the economic resource to 761 GW and represents an installed capaciry of $97 \mathrm{MW}_{\text {e }}$

Delverable Resource

All economic resource will be deliverable, as there is a high electncity and heat demand at sewage works sites and $A D$ increasingly forms a major step in advanced sewage treatment

Table All. Theoretacal Sewage Sludge Resource

Disuict	Pupulal on	Sluily antinis (U) H ara)	Enimery y (GWhtyear)
Etrepthire			
Indgemerth Dininct Councll	52000	1300	10
North stropulire Diamet Councill	55000	1375	13
Onmenty liotuinh Ciumel	35000	176	07
Shrewsbury and Ahcham Brough Couneal	O7000	2425	19
Seulh Shropshira Dearlet Councll	40000	1000	0%
Telforv and Whatin Uniary mutherly	150000	3760	30
Staminolithire			
Camaek Champ Districl Ciuncal	52000	2300	10
Eart Staflordichwe Dialinet Councill	103000	2575	21
Lichliedd Diemict Counclil	4000	2350	19
Nowemelle under Lyme larough Councll	123000	3075	25
Scult Smifiordsher Distind Councal	102000	2560	20
Staflind limoumh Councll	127000	3175	24
Stafforthhire Meorlande Dimerled Councll	14000	23500	1s
Tamprobl	74000	1×50	15
Stoke-on-Trant Unilery Aullinerty	252000	8300	50
Warwichuthint			
North Warwids shre D shat Council	82000	1560	12
Nuneaton mind Bedworlh District councal	118000	21050	24
Fugby Dharict Cound	11000	2200	1.8
	11.1000	2 \$75	23
Wirrew Dealict Council	124000	3100	25
Whenchlwhilit			
Dituman iove Disuca Cevical	05000	2126	17
Malvern Hille Distrect Ceunct	74000	1850	15
Redditich Dimerict Counctl	77000	19.23	15
Wercastar Crity councell	15000	2376	19
	111000	2775	22
Whyre Forsel Diminct Councll	95000	2400	10
Herreforishire Unilary Autherity	168000	4200	34
Vimushtm	1013000	25326	203
Covemiry	304000	7600	81
Dudiey	311000	7775	$\triangle 2$
Sandwal	2111000	7276	Fi
Scilnull	208000	5150	41
Whanall	261000	\$503	32
Whoctumemminton	242000	6050	42
Total	5,391,404	133975	1020

Theoretical Capacity

It is assumed that the theorencal resource is determmed bv the capacity for stoming waste in landfill sites In the West Midlands region there are 615 milhon tonnes of non inett waste already deposited and void capacity for 577 mullon tonnes (licensed) plus 590 million tonnes (unicensed Eith planning permussion [WMLGA, 1999]

Based on the Environment Agency's Waste Management Survev for the West Mudlands [Environment Agency, 1998], it is assumed that 40\% of the licensed capacity and 20% of the unlicensed capacity will be filled within the next 10 years The total amount of waste staved in landfll sites by 2010 will therefore be 964 mullon tonnes

Different elements of waste decompuse at different tates. In total $500 \mathrm{~m}^{3}$ of biomass per tonne of waste are likely to be released, over a penod in excess of 15 years [ETSU, 1996c] The average annual yneld is therefore $33 \mathrm{~m}^{3} /$ tonne/year However, landfill gas extraction system only have a lumited ablity to capture the gas generated It 18 expected that 20% of all gas generated by the waste [ETSU, 1997b] if $7 \mathrm{~m}^{3} /$ tonne/years car be recovered The total recoverable gas veld from ail sites in the Region is therefore calculated (see Table A9) to be 643 mullion $\mathrm{m}^{3} /$ year

Landill gas typically consists of 50% methane and 50% carbon droxide, with an average calonfic value of $19 \mathrm{My} / \mathrm{m}^{3}$ [ETSU, 1996d] Consequently, the energy content of the gas recovered will be $122 \times 10^{\circ} \mathrm{MJ} /$ year or $122 \times 10^{6} \mathrm{GJ} /$ year

Landfill gas is generally combusted in spark Igrution recuprocatung gas engnes that ate well developed for thus purpose Whalst electncal efficiencies of some products ate almost 40%, net generating efficjencies of 30% are more typical plant avallability is ptoving very good wnth modern engmes, at 95\% [Jenbacher, 2000] Thus

$$
\begin{aligned}
\text { Theoreacal resource } & =12,2 \times 10^{6} \times 03 \times 095 \mathrm{GJ} / \text { year } \\
& =365 \times 10^{6} \mathrm{GJ} / \text { year } \\
& =1018 \mathrm{GWh} / \mathrm{j} \text { car }
\end{aligned}
$$

Thus is equyalent to an installed capacity of 122 MW .

Ecomomic Resource

Whalst landfill gas offers some of the lowest priced renewable enetgy avalable, installatons are generallv only effectuve if the suze of the site is above a certain level. Thus is partly due to the economucs of the grid connection, and pattly due to the difficulacs of providing effectave anserobic (without oxygen) environments in smallet site The size of site held to be as econome has decreased from approximately $\mathbf{1 , 0 0 0 , 0 0 0}$ tonnes of waste capacity to 500,000 tonnes in recent years [ETSU, 1996a]

If all the sites over 500,000 tonnes capacity in the West Mudlands were fully developed fot Landfill gas generation, approximately 637 GWh of electricty could be generated Thas represents an installed capacity of 73 MW . A list of all surtable stes is indicated in Table A12

Delivecable Resource

There are very few issues that would constrain the full development of the economic resource, and it has been assumed that thus all 637 GWh of generation could be suppled Note that many of the sites indicated in Table A12 already have sorne electricitv generanng plant, still operating or planned although this does not necessaraly equate to the capacity calculated for the site

Table A12 Landfill Gas－Theorencal Resource

	Wiont Midilands Ren	Staftordiahira	Shropehtirt	Hersferlichirn	Worcmetitrehire	Wrat Madlanila	Warwichehire
thaninet waste							
Existing wesie in plice（tonims）	$\$ 1500000$	15000，000	－ 5000000	\＄000 000	6000000	27500000	4 500，000
Liceensed void capacily（tonnes）	57719900	15671700	6.651000	O－	－3000 200	13471000	B 250000
Unilcensed wokd capaclty（tonnes）	5.051000	11576000	425.000	0	10000000	13，150 000	15400，000
Fortantirl							
Existing wautip in plipew（tonnvi）	\＄1500 000	15000000	1，500 000	6000,000	5000000	27500000	4500000
Licensed vold capactly（tonnes）	2301780	7181860	2784400	3746480	3745410	53418400	33000000
Unilcensed vokd capacily（lonmes）	11810200	2355200	B5［00	2000000	20000000	$3 ¢ 30000$	3700000
Total	16，39\％190．		11，369，40	1174番	11741，410	31，51䢕400	11500000
Gass nelo							
Aпnual recoverable yleld（mnonne）	642654000	16\％ 426000	75790000	75310.000	7536000	243，456 000	78687000
Energy yluld（它diyarar）	12，210 434	3200009	1440124	1457 157	0	$4 ¢ 25$ 9794．	1458587
Eluclncily							
Elucilicaty ganerated（SN／ymor）	3，653 972	960027	432，037	446 se	$44036{ }^{\text {3 }}$	1307683	437000
Electincry generated（GWh＇sear）	4012	257	120	124.	124	315	121

Table A13．Landfill Gas Delwerable Resource

Hie Name	Diswict	Capacily m3	Annual wiociricity y yodil GWhiyr	Operallon caparthy to detal（NW）	Flannd Capaclty （ $\mathrm{M}+\mathrm{w}$ ）
Whytiey Grow Landil｜	Cannuck Chusu	\＄21，700	［ 287		
Poplars Landili Sut	Cunneck Chase	5185000	81 350		
Woodlanim Lendiill Site	Norih Shrepphirg North	1170.000	11750		
Packingion Landill	Wanmekehire	5000000	00000	77	
Ling Helll Quarry	Rugby	－500，000	55000		
Edwm）Rechurds Ludin	Suncwull	\＄500，000	85000		
Jacksons Drickworks	Sollhulif	500000	5000		
Moercm Lundilil	Stafiord	1130000	11300	175	
Fenlor Mancra Quimy	Stoke On Trunl	$2200,0 \mathrm{~mol}$	22000		
Whinocole Landfir She	Tamworth	4735,000	47350		081
Candlee Laxdfill 5 its	Telford \＄Whrekin	2200000	22000		2 m
Wroodhourn Farm Landill	Tulford $\frac{1}{2}$ Whelm	2100000	24000		
WYyorulopla Guamy Lanotilir					
Stop	Whaloalt	2770000	27700		076
Unon Farm Landfiel Silu	Warwnt	000000	－ 000		
Subounhell Landfill Site	Wirmok	1400000	14000		
Hill In Mocr Landill｜\＄ite	Wychemon	0600000	66000		
Wheralmy Landifil Sta	Whechamen	2500000	25		
Telm		他，706，74	¢ 977,0157	4.40	4．15

Theoretical Resource

Globally, there is a large market for solar photovoltanc swstems in off grid applications ranging from 1solated bomes to telecommuncations equpment and water pumping However, in the UK the primary market for photovoltaics will be bulding mounted systems, generall\} connected to the electricity network. Thus the theoretucal resource is detemined by the avalable roof and wall space

Separate calculatoons have been undertalken for different bulding sectors domestuc, warehouses, factones, offices and retall. Data on the existong bulding stock in the West Midlands [BRECSU, 1994, ONS, 1999] was used in conjunction with the following assumptions
(i) New buildings

It is assumed that the number of domestac dwellings in the West Midlands reglon will increase by 135% between 1991 and 2010 (extrapolating the regional trend over the period 1991-98) and that the number of watchouses factones, offices and retal buldungs =nll increase by 10% between 1994-20101
(ii) Avalable roof wall space

For domestic buildings it is assumed that

- 50% have a suitable orientation
- Although the maximum output will be produced from a South facing attay, artays facing East or West will produce approximately 75% of the maximum, averaged over a year, and thus stll be viable
- 95% have no plannugg or architectural restnctorns
- $\quad 80 \%$ are not shaded significantly
- Note that even a small degree of shading, such as from trees or a chumnev, can dramatically reduce the output since a shaded module will effect all those connected to the same 'string'

Thus based on these assumptions of all domesuc buldings ace sutable

For factones and warehouses, it 18 assumed that 80% of all buildings wall be appropriate Orfentation is likely to be less of an assue since it is assumed that the majority of buildings will have a flat roof Some propertles will be structurall\} inapproptate of restucted access

For office and retal buldings, 㱜 is assumed that 40% are acceptable Many office and retal propertes will be restricted by shading, with the notable excepton of large out of town supermarkets and retal centres
(111) Average array size

Domestuc dwellings will support in general a $2 \mathrm{k} \mathrm{W}^{18}$ roof mounted array (approximately $17 \mathrm{~mm}^{2}$). It 18 assumed that factormes and warehouses will support an average attay of 20 kW (although thas can be expected to vary widely, up to possibly 200 kW) and offices and retall an average of 6 kW (agan this may well be considerably higher for certan sites)

The calculataon is shown in Table A14 The total theoretical resource for all buildings (domestac, warehouses, factones, offices and retul) is 3000MW This will generate approximately 2250 GWh per year

The primaty market for PV systems in the UK wll be bulding mounted systems, generally connected to the grid Thus the PV resource is detemnined by the avalable roof and wall space

[^17]Table A14 Solar - Theoretcal Resource

T', pe of property	Domestic	Warehouses	Factories	Offices	Retal
Current number of dueplings/premises	2,084,000	20,073	36,590	22,558	54,701
Number of dwellings/premises by 2010	2,365,340	22,080	40,249	24,514	60,171
A vailable roof/wall space	2×38\%/	x 80%	x 80\%	¥ 40%	$\times 40 \%$
Average array size per propert\} (cwp)	2	20	20	6	6
Installed capacity (${ }^{\text {l }}$ WP)	3×4				
Installed capacriy (MWP)	1798	353	644	60	44

1991 (domestuc buldings), 1994 (warehouses factones, offices, retal)

Economic Resource

For bulding mounted photovolatac systems the cost of electraty generation is currendy $>50 \mathrm{P} / \mathrm{kWh}$ This is unlikely to be teduced as fat as $5 \mathrm{p} / \mathrm{kWh}$ in the foreseeable furure and thus will not feature under the framework of the Renewables Obligation However, PV has been included under the seope of this study for the following two reasons firsdv, it can be argued that the calculation of whether or not PV is economice can not be achered simply on the basts of $\mathrm{P} / \mathrm{kWh}$ and secondly, there are a number of non-econome reasons why PV may be installed (see Delverable Resourte)

PV is fundamentally different to all other forms of electricity generation in that it can be installed wathin the built envionment (ie at the point of demand) and, furthermorte, can be used instead of conventional bulding traterials Under the present pricing structure the former benefit is not realised in econome terms, although there are moves to intoduce 'net metering'l for PV systems ln regard to the latter it is more approprate to calculate the cost of a PV svstems in $\mathrm{f} / \mathrm{m}^{2}$
${ }^{15}$ At present, electuchty exported to the network from a PV system 15 sold at, or close, to the 'pool' price ($\sim 2 \mathrm{p} / \mathrm{kW}$) despute the fact that the electocrty is bkely to be used locally and thus should not incur, it can be argued, the full use of system charge Where PV-generated electercity can be used in the bulding it is displang electncity purchased from a supplet at $\sim 7 \mathrm{p} / \mathrm{kWh}$ Hence under the exsong commerctal framework there is a large uncentive to minumse the export to the gad. 'Net metcang' is a situabon whereby the price pad for an exported k Whi is equal to the cost of an mported kWh se the owner only pays for the net electucty umported TXU Europe are the first (and currently onlv) utilty to introfuce net metenig in the UK but it has been undely implemented in a number of countries such as the US Although net metenng will not dramatically affect the economics of a PV system, introductron on a wider scale would provide a strong political statement and may add mpetus to the growth of the small-scale PV market in the UK
and to then offset the cost of alternatuve constructon materals When PV is calculated in this way, as opposed to $\mathrm{p} / \mathrm{kWh}$ generated, it may be economic in certain sutuations

A recent study [ETSU, 1998b] to determine the value of electricity generated from PV systems in buldings examined 5 case studies a new build office, office refurbishment, a superstore, a new-buld domestac and a prestige public building The study compared the cost of a PV system wath conventional cladding in each casc For curtain walling (say for a new office bulding) the PV svstem cost of $£ 784 / \mathrm{m}^{2}$ compares to $\mathrm{f}_{3} 300 / \mathrm{m}^{2}$ (stone), $\mathrm{f} 420 / \mathrm{m}^{2}$ (glazigg), $\mathrm{f} 640 / \mathrm{m}^{2}$ (granate faced precast concrete) The study concluded Where PV replaces high-cost, prestge cladding the PV electuaty genetation will become cost-effective in the short to medum term (after 2005) under all matket development scenarios If a more supportwe policy framew ork is in place, PV integrated buildings ate expected to become a commercial reality by 2010' The market for 'presugrous' wall claddings for new or refurbished offices is taken as the econome resource for PV between 2000 and 2010

A further study [ETSU, 1996e] defines 'prestgious' claddings as natural stone, cast concrete stone, curtain walling, glass reinforced plastes, decorative metal panels and concrete panels These claddings accounted for 51% of all wall claddings $1 n$ new office buildings in 1995 (having grown in populanty from about 30% in 1975) and 45% of the refurbished wall area in exisung buildings Of the total presagious claddings, $325 \%\left(286,000 \mathrm{~m}^{2}\right)$ is in the likely unstalled pace bracket for PV - defined as $f^{2} 800 / \mathrm{m}^{2}$ and above It is predicted that this will increase to $426,000 \mathrm{~m}^{2}$ by 2000

The economic tesource is thus calculated on the bass of then following assumptions
(I) PV will be economic for prestgious wall claddngs of $8800 / \mathrm{m}^{2}$ and above
(ii) The wall atea of such claddings (incotportted into new or refurbished buldungs) will increase from $426,000 \mathrm{~m}^{2}$ to $706,000 \mathrm{~m}^{2}$ in 2010
(ui) 68% of the new claddings will be installedin the West Midlands (based on the geographec distabution of commerctal office stocle in 1995)
(iv) 25% of the avaulable wall surface will be suteable for PV cladding

$$
\text { Capacitv }=85 \mathrm{~m}^{2} / \mathrm{kW}
$$

Economic resource $\quad=[0.25 \times 0.068 \times 280000] / 85 \mathrm{~kW}$

$$
=560 \mathrm{~kW}
$$

$$
=0.56 \mathrm{MW}
$$

Deliverable Resource

PV will rarely be viewed from a purely cconomic petspective because of the fact that it can be integrated into the urban environment and is unlikely to be invested in by propect developers/venture capitalists looking simply at expected rates of return. For example, when PV is installed as a facade on an office ot retail unt the visual effect is as or even more mportant and a company may chose to install PV as a visible display of its environfental comrntment Simularly, homeowners are unlukely to putchase a PV system simply because they find the payback rate attuactuve In the domestic market, a certain proportion of environmentally conscious owners will purchase PV so that they have the capabilty to generate electncity on site Thus matlet is likely to expand if ' $A C$ Modules' become avalable as a DIY product ${ }^{20}$ since they allow a modular approach to installing a PV system Although a 2 kW svstem (615000 ustalled) will be beyond the scope of most of the populanon, a couple of $A C$ Modules - whule not producing the same output - will be wathen the purchasing power of a much larger group of people (300 W of AC Modules is comparable in cost to an average PC)

Some indication of the 'deliverable' resource can be obtained from the growth in the total installed PV capacitv in the UK as shown in Table A15

[^18]Table A15. Installed PV Capacity in the UK [EA, 2001]

	Installed capactity in the UK									
										kW
	1992	1993	1994	1995	1996	1997	1998	1999	2000	
On-grtd distributed	0	6	54	59	75	190	328	736	1,506	
Totak	173	266	338	368	423	589	690	1,131	1,929	

White there is currently less than 1 MW of building mounted, grid connected systems in the whole of the UK it is anticipated that, within the next 10 years, there will be a step change in the rate of installation For example, the market may be sumulated by a large-scale goverrment subsidised programme Large programmes have already been intuated in Japan, Germany and the US While the shape of a UK programme is likely to be different, it is wnth this in mund that a total of 70,000 homes are predicted to be "deliverable" in the lK withan the nest 10 years Assuming these ate distributed between the Regions according to the exisung stock of dwellings in England \& Wales - thus would amount to 7100 new domestic PV systems, equuvalent to an installed capacity of $14,200 \mathrm{~kW}$

It is therefore assumed that the delverable resource will be larger than the econormic resource, wrth a total installed capacity by 2010 of $1476 \mathrm{MW}{ }^{21}$ (142 MW 'non-economle', 056 MW, 'econome')
${ }^{21}$ For comparison the Britisla Photovoltac Assoctation (PV-LK) have set a target of 300 MWp by 2010 for the UK as a whole In order to acheve this , PV-UK proposed a number of measures including premmin rates for PV-electacity of around $20 \mathrm{p} / \mathrm{kWh}$ and drect grants of 50% towards the capital cost

Theoretacal Resource

The resource assessment is based on the work canned out by Salford Unversith frotn 1987-1989, [ETSU, 1989] whuch sought to map the enture small scale hydro power ${ }^{22}$ resource for the UK Although the studv was carried out some tume ago it is sull appropnate for a firct-pass regional assessment of the resource The hydrology is unlikely to have altered sigruficantly and the technology has not progressed in a major way since 1989 having alteady actueved a tugh level of maturty For the theoretral resoutce the following assumptions ate made
(i) No new dams are constructed 1 e micro-hydro will be confined to the sites of existong weirs and sluices on rivers and water authority sites (Since no Fable water industry sites were found in the West Midands regron it scems highly unlikely that further dams will be built)
(ii) All the stes identafied will be developed Although stes with heads below 2 m or an installed power below 25 kW were discounted from the Salford study, on economuc ground, they have been included here on the basis that these sites are technocally accessible It is assumed that such sites will have an average capacity of 15 kW

120 sites were Identufitd in the West Midlands Regon with a total Installed capacity, based on the above assumptions, of 2469 MW . These sttes are presented in Table A17

Economic Resoutce

The economic viabuty of hydro power generallv uncreases wnth installed capacity This in tumis determuned by the product of design head and flow rate, which are site spectific factors

[^19]A tecent study for the Environment Agency [Environment Agency, 1999] investagated the potental for hydro-power in the Arguan Region 15 sites with a head greater than 17 m were surveyed and the 5 most attractuve sites selected for a more detailed economic analysis 'The tesults ate ptesented tn T'able Al6:

Table A16 Results of Envitonment Agency Micro Hydto Study

Site	Gross head (m)	Installed power (kW)	Total cost (as part of refurbishment) (f)	Tartit requared ${ }^{1}$ (p/kWh)	Tariff required ${ }^{2}$ ($\mathrm{p} / \mathrm{kW} \mathrm{W}$)	Capital cost/kW (f)
Caste Mulls	28	72	140,000	415	329	1940
St Neots	237	61	132,000	428	338	2160
Elton	228	40	118,000	591	467	2950
Irthlingborough	234	34	112,000	745	590	3290
St Ives	178	44	129,000	613	487	2930

${ }^{1}$ The Environment Agency set a cnteria of an IRR 6\% above inflation (which was 29% at the turne of the study) and a 20 year design life
${ }^{2} 20$ years was thought to be a tathet pessimisac dessin life for a hydto scheme and so the analysis was camed out for a different set of parameters 30 year design life and 2% O\&M costs (as opposed to 3%)

It can be seen that the tanff requared is strongly dependent on the design life that is assumed for the plant but in any case the feasiblity of each project is described as 'borderlıne' (Note that this study was cacried out before the New Electncity 'Trading Arrangements and Renewables Obligation were announced and so the economic assessment 18 inducatuve only)

For the purposes of this regional resource assessment it is assumed that All sites with a head over 2 m wall be developed

Thus is probably a farly opemuste vew since micto-hydro is not a new technology and thus vable sites are likely in the vast majoaty of eases to have alceady been assessed and developed. However, the above assumpton tan be justified on the grounds that
a) mucro-hydro could feature 25 a strategic policy in part of the Environment Agency's werr refurbishment programme (in such an instance it is estimated that apptoximately onlv $10-20 \%$ addational costs would be assocated with the hydro scheme avil component)
b) many mucto-hydro propects will be and are developed by large private landowners to met on site electricity demand. Thus is mote likely to be economuc since the generated power is replacing that imported from an electincity supplec at $\sim 7 \mathrm{p} / \mathrm{kWh}$ For example, at Houghton Mill (East Angla), the Natonal 'Trust are proceeding with a hydro electric scheme as patt of a mapor refurbishment of the Mull despite the fact that the design head is only 137 m The system is expected to produce $116 \mathrm{MWh} / \mathrm{yc}$ ar and the Tust intend to consume the power in its propertes in the region

According to the above assumption there are only 6 sites in the Regon which are wable, two of which have subsequently won NFFO contracts but are not yet operational It is anteresting to compare the planned installed capactry of these two sites (220 kW and 90 kW) with that predicted from the Salford study (288 and 146 IW) respectively This indicates that the study perhaps over estumated the resource
'The total economuc resource is 1844 MW , of which 0549 MW is already mstalled, 0310 MW is planned under existing NFFO contracts and 0985 MW identified as a petental resource Thus is shown in Table A14

Deliverable Resource

Assumption all the economuc fescurce is deliverable (Further possible constrants such as flow control, navigaton and netwotk connection would need to be assessed on a sute by-site basis)

Table A17. Hydro Theorencal Resource

Rivit	Locition	Town	Head (m)	Insizilad capacity (kW)	
Tame	Smurfit Paper Mill	Tamworilt	2	146	
Chumet	Far Kungstley Banl	Cheddleton	75	62	
Dovien	May fiould Mall	Mayfield	24	65	
Avon	Pershure Lock	Parshori)	25	200	
Avon	Fladbury Lock	Fladbury	2	225	
Sevem	Sbrewsbury	Shrewsbury	2	633	
Cola	Springfiold	Birminghain	52	15	
Ane	Elotley Mill	Henley in Arden	<2	15	
Alne	Blackiord Mall	Henley in Arden	¢2	15	
Alne	Wootton Pool	Whotlon whawer	<2	15	
Ane	Whootton W'awen	Whootton Wew	<2	15	
Alne	Aston Comfinur	Wilmate	<2	45	
Ans	Great Alme Mill	Great Aine	<2	15	
Arrow	Welr	Coughton	<2	15	
Arrow	Arow Mill	Adrow	<2	15	
Ampur	Bromom Mal	Arcw	<2	15	
Avon	Barton Wielr	Brdford on Avon	<2	15	
hyon	Marcliffe Wher	Cleeve Prior	<2	15	
Auph	Slsenshamil Lock	Strensham	<2	15	
Avon	Nafford Lock	Erilingham	<2	15	
Avon	Whyre Mill	Pershore	<2	15	
Avon	Eveshem Lock	Evesham	4	15	
Avon	Cleva Pror	Wratiord on mvon	L2	15	
Avon	Welford on Avon	Welford on Avon	<2	15	
Avon	Wadduntion Lock	Luddraglon	-2	15	
Avon	Clifiord Chambers	Cliford Chambers	42	15	
Stour	Cution Mill	Newbold on Stour	<2	15	
Avon	Alverston Mill	Averston	-2	15	
Avon	\| M		Hamplori Lucy	42	15

Denib	Walanboume	Wrallerbouma	$\leqslant 2$	75
Avan	Barford Whar	Barfara	¢2	7 \％，
Avon	Casile Whar	Wharmek	$\checkmark 2$	1.
Leam	Codege Mivir	Wharwick	<2	15
nvon	Rock｜rill｜	Wharume	＜2	15
Hworn	Saxons Min	W\％armek	<2	15
Avon	Stonlough Abbiy	Stanhinh	42	15
mwon	Merston Fermi	Marsion	＜2	15
Avan	Stuice	Rysion Dunampra	＜2	15
Blylin	Dlyth Moll	Shustoke	<2	45
blyth	Duke End	Coleshill	－2	75
T㐌的合	Powick dride	Worcester	42	15
Savem	Diglia Lock	Werceater	42	15
Suvam	Davme Lock	Worcester	<2	15
Severt	Holt Fleat Lock	Hole Hasulu	<2	15
Severn	Larford Lock	Stourport	$\times 2$	15
temt	Walkmill	Ludlow	<2	15
Teme	Luckton Mill	dramplon Dfian	－2	15
Temit	Lingam Dindy	Euckn滴！	42	15
Tome	Warar	Kıighton	52	15
Onny	Halfard Mall	Crawen Armiv	<2	15
Feme	Hurnt Mill	Clun	2	15
Teme	｜ V_{1}｜	cluntor	－2	15
roodon	Whem Min	WYarr	$\underline{2}$	1 15
Penk	Surethon｜will	Erewood	\square	13
Penk	Sameford Hidl	Erawad	5	15
Dorling	St Thomes	Staiford	52	15
Trant	Huntic Mall	Gt Heymoud	<2	15
50\％	Shugborough	Cr Haywood	－2	15
Trent	｜M1	入rewas	2	15
Trent	Lock	Arewtas	－2	13
Antker	Grundon Fishds	Anhersiont	－2	15
Ankar	Froldon Erigy	Alher＇sloral	－2	15
Trint	Whinshall Mivr	Lurton－Trenl	42	15
Trent	Winchall Wew	Lurton－Tranl	42	15
Dave	Wair	Rollablon	<2	15
Chumat	Fint Mill	Cheddliwion	<2	15
Chumat	Wher	Ounkrmor	¢2	15
Chumet	Stron min	（10）	-2	13
Chumet	Wrelr	\＄10n	－2	13
D04F	Ellastone	Elaskon	<2	13
Churndet	Roucesiar	Rocinster	42	15
Dove	Merchington	Marchming	＜2	15
Dave	Maralan	Mmistor－Dave	＜2	15
Davi	Snelatan	Srnelich	42	15
Dave	Church hluyfinld	Church Mayriald	42	15
Dow？	Maplotan	Wapletor	≤ 2	15
			Telal	2454

Table A18. Hydro Delwerable Resource

Appendix B

Respondents to Consultation

Council/Organsation	Existing Renewable Energy Generatuon	Previout Estimates of the Resource	Potental Impact and Conttramta	Plantung Polrcies	Other Comments
Warwicksture County Council	Landfill gas to electerciry stes at Packington Landfill Sire in North Warwickshire Botough, Judkuns Landfill Stte in Nuneaton, Struths Landfill Site ar Bubbenhall, Ufton Landfill Site and the former landfill stte at Ryton Ling Hall Landfill site is to serve the Natonal Grid from mid Sept The environmental impact of these sites has been self contaned	No studies of the resoutres for renewable energy	Inpact on local restidents Particularly important	The revised W/armickshire Strucrure Plan policy GD1 states maxmum use of renewable energy as an over riding am	Feel wind turbines unlikely The West Mudlands contribution to Natuonal Targets 15 must lihely to come from combustible or digestible industral, agncultural and domestre waste
Rugby Borough Council	No exasung renewable energy plants	No studies of teriewable energy resources	Consider potental for renewable energy to be farrly limuted to the Borough due to 1t's phvescal characterisucs Many areas would be sensituve to development such as wind farms	Local plan (adopted 1997) contans pulicy un renewable energy - thus may be revised durng the plan review	

Council/Organsatom	Existang Renewable Enery Generation	Pfevious Ettimate of the Regource	Potctitial Itmpact and Constrames	Platnntg Polucies	Other Comments
Staftordshure County Council	Puplats Fill landfill neat Cannock 3MW Expansion anticipated Waste to Energy Plant at Hanford Stuke on Trent Small scale hydro electroc scheme in Staffordshire Moorlands Smail scale truals in Forest of Mercia Solar panels at Wi incote Jumor School, Tamworth (proposed installation of wood burniog stove at Chasewater lnnovation Centre)	Windspeed map of the country prepared by ETSU NFU smiles of short crop rotation coppice and other bro fuels	Windfarms considered viable Visual and aural impact important Areas of highest wind speed tend to councide with those areas most used by walkers and climbers	Staffordshire and Stohe on Trent Depost Draft refers to more efficient use of energy and the usc of renewable energy resources	
Cannock Chase Counell				Copy of polucy from adopted plan sent Renewable ener ${ }_{2}$ y resources to be reviewed as part of the local plan process (underway)	No plaming applications submitted in respect of the renewable energy polky (PEP6) over the last 2 years

Councl/ Orgamsation	Exintung Renewable Enerty Gcheration	Previous Estumaten of the Resource	Potential Impact and Constranta	Ptantity Policies	Other Comment
Staffordsbire Moorlands Distrect Council	No renewable energy plants in operation or under development.	No studies of the renewable energy resounce	If renewable energy is to be explonted, the DC need to be satusfied that the impact on the landscape is acceptable \{particularty in the Green Belt and Peak Distuct National Partik)	Polcy from atlopted local plan sent.	
East Staffordshure Botough Councl	No exusung renewable energy plants operating or under developinent.	No studies of renewabie energy undertaken	Environmental impact of wnd farms on Areas of Spectal Landscape Value and the Peak District Nanonal Park is a particulat concein	Polucles concerbing renewable energy are likely to be included in the amended local plan	
Newcastie Under Lyme Borough Councl	The council will be mundfal to "working towards a target to generate 10% of energy from renewable sources" by 2010 subpect to costs beng acceptable Need to consider generation of renewable energy by indavidual occupters of individual property Insulation and fuel poyerty should be considered				The Council are renewing its Local Agenda 21 Envitonmental Stratcay - thus will contann reference to a move to use of energy from renewable sources Should the encrgy consumption of a developtnent be a finateral constderation' in development control

Councl/Organsation	Existing Rencwable Energy Generation	Prevous Estumates of the Resource	Porential Impact and Construnts	Planning Policies	Other Comments
Shropshire County Council	Wanford College, Baschurch Plant 20W Belveder School Shrewsbury PV - 1kE Greenfinch Burford experimental AD plant.	Renewable Energy in Shropshite 1997 (ETSU) Harvestong the Wind 1997 $G e n e s i s$ Pelleted Biofuels Study - March 1998 Local Strategles for AD in Shropsbire and Herefordshure 1909 Planming Tuuls for Small Scale Embedded Gencraton (ongong) Marches Wood Fuel Study (2000)	Existrig developments are small scale and therefore have had little mpact Visual impatet Shropshure People Pancl 80% in support of renewable energy, but only 40% in support if negative nisual impact bkely Scale - renewables need to be developed at an appropnate scale Traftic likelv need for transport investment in rural areas Grid Connectuon - cost of connection and ptoblems of transminsion losses Heating Load renewables to provide heat underdeveloped Local ownership? Need for smaller scale waste gastficaton Env Agency Limutations on Grade 1 rivers Econorme Viabluty	Shropshire and Telford and Wrekn Joint Structure Plan 19962011 contalns poleces on energ effictency and renewable energy	Betron Abbats, Shrewsbury Landfill Gas - 1 MW due for completion 2001

Council/Otganisation	Existang Renewable Energy Generation	Previous Estimate of the Resource	Potential Impact and Constrant	Planning Polncies	Other Comments
Bndgnorth Distnct Councl	No tenewable energy plants operating or under development	No studies of the renewalble energy tesource in the district Ref 'Wind Energy Strateg for Shropslure' (Shropshure Energy Team, 1997) Contact John Hatrison at Shropshre County Councal	General feeling that renewable energy developments should not be encourages in ateas of landscape ot nature conservation designations	In response to the Distact Local Plan Review consultation strong support was expressed for the development of small scale renewable energy proposals, partacularly biomass Man issue of concern was the possible visual impact of wrid turbunes Local plan curtently being reviewed Revised plan is Likcly to include a policy on the development of renewable energy	
Brimungharn Cry Councl	None other than dutrestac solar panels	West Mıdlands Sustamablity Round Table	Encouraging planners to be more recepave to applications Problem in convincing developers to invest in renewibles technology	New UDP refers to use of renewable energy Council have target to purchase 15% of energy from renewable sources by 2010 In discussions to establish central buwnes consoitum	
Stoke on Trent	'Sinergy' gencrates 12 5Mw of Green energy	Chatterley Whitfield Histonc Collury complex supplying energy needs by wind, solar, biemass, and redeemable sources		City Plan Review currently underway Worknig draft refers specifically to landfill gas, buomass energy and wind energy tif the explanatory text	

Counal/Orgarusazon	Exusting Renewable Energy Generaton	Previous Estrmates of the Resource	Potential Impact and Conetramte	Planting Policicı	Other Comtrente
MAFF	Village school at Weobley powered by renewable coppice A number of landfill sites generate methane used to provide electrictity for the natural gnd Some shot totation copprice is grown for domestic power generation in Worcestershire Policies of Forest of Mecia and The Natonal Forest both recognise the porenual for short rotation coppice to supply power The Energy Crops Scheme will provide establishrnent grants for short rotation copptce	Not awate of any previous studies of renewable energs resource within the region	Potental for woodland to generate regular small coppre matenal provided that a market can be establushed Putentual for wind farming in Herefortshire, Shropshite and within or close to the Peak Distnct Natoonal Park. However these areas are hughly visible. Water power is unlikely to feature signnficantly due to lowland character Lack of local markets for renewable energy to be an important constrant The Countrystde Character and Natural Area approaches can encourage the development of tencwable resources in areas where it wll have mintmum impact		Proposals to erect win farms in West Herefordshire were subject to plannung control and did not proceed

Coumel/Organsation	Existing Renewable Energy Generation	Previous Estimaces of the Resource	Potenelal lmpact and Constraint	Plannity Policies	Other Comments
Broush Hydropower Assaciation		'The Salford Study' ETSU publication SSH 4063 (but, this dues not consider sites with a head below 3 metres or installed capacity of less than 35kW	Potentual for 'hugh bead' schernes in the West Midands is limuted Ample opportunttes for Iow head generation		Otd water mills sites offer potential for electricty generation Environment Agency have a list of weirs
Countryside Agency		Report recently comintssioned to produce visual representations of the consequences for the Englash countryside	Key concern is the conservaton and enhancetent of countryside chatacrer In order to integrate the renewable energy and the character of the countryside, the Agency recommends that the Countryside Character approach is used at a local level to inform asscssmenta of capacity for tenewable energy developments At a regional level countryside character should also be sleed as an underlying framework for detcrmining information on appottunitles, constrants and conditions for the development of renewables		

Council/Organsation	Exusting Renewabit Energy Generation	Previous Entrmates of the Resource	Potentral Impact and Constrants	Planning Policies	Other Comments
Telford and Wrekun Councl	Two generatur sets operatng on waste gas at the disused Granville collery site, approxamately 500 k W each. 70 CHP at Madeley Court Schaol		Impact of wind power un radio recepton Resistance from lacal residents. Lack of qualty wood fuel suppleer - consrrant to wood heanny systems Economic constraints to solat water heatiog	Structure and Local Plan Pollcies sent.	In discussions with Marches Enetgy Agency for a small 2 kW wind generator at Ladygrove School in Dawley Opportunty for 100kw hy dro scheme on 7 weir on small trver

Appendix C

Synopsis of Development Plans

Appendix C-Contents

Shropshure C1
Shrewsbury and Atcham C3
South Shropshure C5
North Shropshure C7
Oswestry C9
Worcestershire C11
Worcester C14
Bridgnorth C16
Redditch C18
Wyre Forest C20
Bromsgrove C22
Malvern Hulls C24
Wychavon C26
Hereford and Worcester C28
Hereford C30
Leominster C32
South Herefordshire C.34
Staffordshire C36
Pealc District Natonal Park C38
Stoke on Trent C40
Cannock Chase C41
Lichfield C43
South Staffordshite C45
Staffordshre Mootlands C47
Tamworth C49
Newcastle undet Lyme C51
East Staffordshre C53
Warnickshite C55
Warwick C57
Stratford upon Avon C59
Nocth Warwekshure C61
Nuneaton and Bedworth C63
Rugby C64
Birmungham Cab
Walsall C67
Sandwell C68
Soluhall C69
Dudley C70
Coventry C72
Wolverhampton C74

$$
\begin{aligned}
& \text { STUDY OF RENEWABLE ENERGY PROSPECT'S IN THE WEST' MDLANDS } \\
& \text { REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDP's }
\end{aligned}
$$

Cunty/Dotough_Shropshire

Plan Status and Planning Timetable

Current adopted plan January 1993
Plan revew status Shropsture and Telford and Wreken Joint Structure Plan - Deposit Drafr 2000

Developanent Plan Policies		
Renewable cneren.		
	Y	N
Existing local plan policy relating to renewable enetgy ${ }^{3}$		X
Comment		
Potental constrants to the development of tenevable eneregy tesources		
	Y	N
Green Belt	\checkmark	
AONB	\checkmark	
SLA/AGLV	\checkmark	
Other		

Previous studiec of the tenewable chergy tesource

Renewable Energy un Shropshure 1997 (ETSU)
Harvestung the Wind 1997
Genesus Pelleted Biofuels Studv - Match 1998
Local Strategres for AD in Shropshute and Herefordshure 1999
Plunning Tools for Small Scale Embedded Generation (ongong)
Marches Wood Fuel Study (2000)

Existung renewable energy generation

Wanfort College, Baschurch Plant 20W
Belveder School Shrewsbury PV - 1 kW
Greenfinch Burford - expermental $A D$ plant
Existing developments are small scale and theretore have had hitle impact
Conceros inthude:

- Visual umpact - Shropshure People Panel - 80% in support of nenewable energy, but only 40% in support if neegative visual impact likely
- Scale - renewables need to be developed at an approprtate scale
- Ttaffic likelv need for transport investment in rural areas
- Gnd Connecton - cost of connectuon and problems of transmission losses
- Heating Load - renewables to prowsde heat underdeveloped
- Local ownershup?
- Need for sinaller scale waste gasieication
- Env Agency limatations an Grade 1 ravers Economic Viabilits

Pryious planune applications/appeats

Betton Abbors, Shrewsbury - Landfill Gas - 1MW due for completion 2001

Proposed future plannung policies

Froponed Modifications,
P56 - Energy Efficency - All development proposals for new buld of conversion should demonstrate how they will explout opporturntaes for acheving the hughesr levels of enengy efficient by utiling appropnate design, matenahsm and methods of constructaon and innovative layouts to maxmum benefits from passive solar gan

P57 - Renewable Energy Developments whuch generate and use encrigy from renewable resources are encouraged in pinenple Local Plans will contain detaled poleres which will, ensute that the national and local environmental, soctal, and economic benefits of individual schemes arte not offset by adverse effects in people and the environment and that there is safe and adequate access

Discucstoms/correspondence with plannity officers

The Structure Plan undcates that bomass, landfill gas, waste, and small scale hydro resources may be practucal in the Shropshire and Telford and Wrekin area. Proposals which explott these resources will be welcomed, especially of implemented on a smallk scale and likely to benefit the communitues in which they are located

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDP6

County/Borough Shrewsbury and Atcham

Plan Statur and Plannus Timetoble
Current adopted plan
Plann revew stanus Deposit Draft

Previous studies of the renewable energy resource
None

Exastng renewable energy generation

None

Previous plannine apolicatrons/appeals

None

Proposed future platoturgepolicies

Propored Modificationa

Deposit Draft
INF13 - Plannug permustion will ouly be granted for pruposals involving renewable energy schemes provided that each of the followng enterla are met

- In the open countryade or on the edge of settlement, any buildings should be kept to a mumum and screened bs aew landscaping,
- There is no unacceptable adverse impact on the setang of Conservation Arcas, Lasted Building5, Scheduled Anctent Monuments and Archaeological remarns,
- The proposal should not have an unacceptable adverse impact on the AONB, Areas of Specal Landscape Character or ant sares af recognused ecological importance
- The proposal should not tesult in a sigmuficantly increased health or safety nisk or nusance to the public,
* Any buldings and other structures are sited in sympathy with the local features and respects the grann and form of the land and be located so as to menerne yisual intrusion,
- Nouse levels created by equpment and operatonal procedures do not adversely affect the ameruty and quality of life on residents in the vicinty of the proposed development,
- The local highway network is capable of accommodang and adduconal traffic that may be generated duting construction and operaton,
- There should be no irreversible loss of the best and most versatule agricultural land, and
- The proposal macludes realistic means to ensure the removal of any plant, buidengs or siructures when they become tedundant and the sausfactory testoratoon of the ste

Discunions/correspondence with platuning officers

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough South Shropshire

```
Plan Statue and Planning Timetable
Current adopted plan October 1994
Plan revnew stanus. Pre Deposit
Local plan curreotly under reveru. Am to publush deposut dmaft early 20001 (Furst deposit draft abandoned)
```


Deyclopment Plan Policies

Aencwable energy

Existrig local plan polucy relateng to renewable energy ${ }^{3}$
Comment
Polcy GP6 - Renewable Energy - sets out 5 critern against wheth proposals for development designed to generate or capture energy from naturally sustanable sources will be judged. The adverse effects upon agriculnute and the AONB are sygnficant concerns Proposals should also be consistent with local plan policies GP2 and LN11

Polucy GP7 - Widfarm Developtaent - states that ' Proposals for wrodfarm development will only be perritted withon the AONB and the Area of Special Landscape Character where ats promunence and visibiltey would not adversely affect the qualry, setang and enporment of the landscape. Elsewhere windfarm development will notmally be permitted where its scale, suing or cumulatrve effect would not have an adverse mpact on landscape qualits and recreataonal enpovment

Polky GP5 Energy Conservation - seelss to ensure that the conscrvation of energy is taken into account in the design of development proposals Proposals will nomally be permited for developments using layouts, siting, design, techaques building methods and maternals designed to secure energ, conservaton and the use of energy from renewable sources provided that they are consistent with other local plan policies, comply whth pohcy GP2 and use, where possible, areas of derelict or under undised land

Potental constrants to the development of tenewable energy resoutces

	\mathbf{Y}
Greea Belt	\mathbf{N}
AONB	\mathbf{X}
SLA/AGLV	\mathbf{X}
Othẹr	

Previous coudre of the tenewable chetey resource
None

Exisung renewable energy generation

None

Prosious planning applications/appeals

Application for a single wind turbine th the AONB refused in 1997/8

Proposed future planning policies

Proposed Modifications:

Local Plan currently under review Aum to publesh deposit draft early 20001 (First deposit draft abandoned) Precise wording of moditications yet to be determined

Diecustions/correspondence with plannuog ofticers

The wording of the local plan polceses relatung to renewnble energy will be redrafted for the deposit plan in order to reflect latest PPG recommendatons However, the planning officer antupates thit umplications of the polices will reman largely unchanged Protectuon of the Shropshite Hills AONB will rematn an overnding concern

Two thirds of the District is an Area of Outstanding Natural Beauty and it contains two large Envitonmentally Senstuve Areas - Clun and South Shropshute Hills Local plan policies seek to protect and eahance these areas, therefore whilst policies GP6 and 7 state that the Councl will considet proposals environmental and visual concerns are likely to be a sugnuficant constrant. In much of the distnct these issues are likely to prevent the construction of wind turbines Alternative technologies with a lesser environinential ot visual impact would be more likely to obtan plannurg permission

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDP:

County/Botoughi_North Shropshire

Plan Status and Plomtume Tumetalde

Cutrent adoped plati. August 1996
Plan teview status Pre Deposit

Development Plan Polucies		
Renewable energa		
	Y	N
Exisung local plan pollcy relanog to renewable energyy		X
Comment		
The adopted plan makes no reference to energy from renewable sources		
Potental constrants to the develogment of renevable energy resources		
	Y	N
Green Belt		X
AONB		x
SLA/AGLV	\checkmark	
Other		
Policy D 23 - Areas of Special Environtanental Intercat - 14 areas of Spectal Environmental Intetest will be protected and enhanced for their amenty value and qusual chatacter Proposals for development will need to have parbcular regard to the exssung character of the surrounding atea in terms of design, materials, scale situng and landscaping		

Breviout studies of the renewable energy resource

None

Existing rencwable energy generation
 None

Prcyious plannme applications/appeals

No previous applications for renewable energy in the district

Proposed future planning policyen

Proposed Modificatoons

Pre deposit

Discussions/correspondence with plannume officers
The deposit draft will not contan a spectic pulty relatigg to renewable energy, the plan will however state the Districts intentoon to conform with those polces telatng to renewable energy stated in the County Structure Plan

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPS

County/Botmugh. Oswestry

Plan Status and Plannane Tumetable

Current adopted plan July 1999
Plan review status Pre deposat

Deyclopment Plan Policies

Rencowable enerey

Existang local plan policy relatung to renewable energy ${ }^{3}$
Comment
Polucy NE17 - Renewable Energy Schemes Planning permussion will be granted for proposals for renewable energy schemes provided that they meet 8 listed coterna Decisions whll be made with regard for visual and ensronmental impact, health and safety inthleations, noise, effect on addruonal traffic and the highway network, mpact on best und most versatile agnicultural land Proposals should also inchude realistuc means to ensure satusfactory restoration of the site The plan states that "t whlst there is support at a natuonal level for developing tenewable energy schemes, it is also recogrused that any such proposals must be weighed aganst the contunuing commutment to protect the environment"

Policy NE18 refers spectically to wndfarm development Proposils will be deternuned on ther indwidual ments and on the basts of the cumulative effect of other such developments neartov In particular, their mpact on local communutes, areas of high landscape qualty, wildufe habntats and water resources will be inportant consideratuns The accompanveng text highlights the Area of Special Landscape Character in the North West Uplands as an area most likely for windfarm development. Protectron of this area is a key arn of the local plan, therefore there is concern about envronmental implications The plan sets in detall the information thes should be provided alongside any plannug application

Porenual constrants to the development of renewable energy tesources

Green Belt
AONB
SLA/AGLV
Othet
Policy NE1 - Areas of Special Landscape Qualutz - seeks to protect the visual qualuty of the countrvside Landscape cooservation wrthin the Areas of Specal Landscape Character in the North West Uplands, The Cliffe, and along the River Severn Development will not be permitted where thus would adversely impact upon the landscape because of locatoon, scale, stac design and/or matenals
Polic, NE2 - New Development in the Countryskde-aims to munimise the tmpact of new developments on rural landscapes New developments should conform with 7 listed enteva covering visual and encmonmental utmpact These conditons are considered to be of particular importance within the Ateas of Spectal Landscape Character

General policies on mature conservation and agnculture

Ptenous studies of the renewable energy resource
None

Existing tenterable encrey gencration
None

Previous planming applications/appeals
None

Proposed future planning policies

Proposed Modificacions:
Local plan revew is at an earlv stage

Discuss1ons/correspondence with planning officers:

STUDY OF RENEWABLE ENERGY PROSPECT'S IN THE WEST MIDLANDS

 REVIEW OF EXISTING ST'RUCTURE PLANS, LOCAL PLANS AND UDPs
County/Borough Worcesterchire

Plan Status and Planning Timetable

Current adopted plan June 1993
Plan review status Deposit Draft

Development Plan Folicies		
Renevable energy		
	Y	N
Exisung local plan policy relating to renewable energyr?		
Comment		
Potential constrants to the development of renewable energy resources		
	Y	N
Green Belt	\checkmark	
AONB	\checkmark	
SLA/AGLV	\checkmark	
Other		
Polcy CTC6-Landstape Features		
Polcy A1 - development of agrycultural land		
General conservation and enmronmental polcres		

Previoun studies of the renewable energy resource

Exustanstene wable enctgy zenctation
Plans to bould waste to energy plant.

Frevious planning apphcations/appeals

Proposed future plamine policies

Proposed Modifications

Polscy EN1 - Renewable Energy Faciltses Proposals for the development of facilties to ptovide rentewable energy will be supported subject to other policies of the plan, partrulatly those relatag to local environmental effeces of the development.
 ptovided that they do not cause unacceptable ham to the surroundng envronment or to aature conservation interests, do not result in extessive notse pollution, and are acceptable in relation to other plan polices
Polecy EN3 - Waste to Energy - Proposals for facitues for the genctation of energy from landfill waste or from the incineration of waste will be endorsed subject to other polices in the plat and if they provide the best practicable environmental option

Poler CTC 1 - Landscape Character - Proposals for development and associated land use change or land management must demonstrate that they re compauble with the landscape character of the area in which they take place Development should be informed by and be sympathetc, to woodland, hedgerows, ficld boundanes, settlements and roads, exrsung buildngs, natural dranage, historic landscapes, wildufe habitats, and the sensiuvity of a partucular landscape to tolerate change In addition, Polver CTC2 states that the Local Planning Authorits will take every opportunty to safeguard, testore ot enhance, as approprlate, the landscape character of the aren in whuch they are proposed

Polecy CTC4 - Areas of Great Landscape Value - Pnonty will be given to the conservation and protection of key landscape charactertstics, in particular visual senstavity, and development which would adversely affect these areas will not nonmally be allowed

Poles CTC3 - Withun the AONB prionty will be given to the conserviton and protecton of the landscape Development will not normally be alluwed except where at has no adverse affect on the landscape, and partucularly the kev landscape charactensacs of the AONB, and where it is for small scale development located within/adjatent to an existing settlement, which is essential to meet local communuty needs, or small scale recreatron and tourism facilthes, ancluding farm diversification, or the purposes of agriculture of forestry practices Exceptonally development will be allowed where there 1 s no alternatue site sutable for the purpose and it can he demonstated to be essentual to the overndiog natoonal interest

Polcy D36 - Control of Development in the Green Belt - There will be a presumption aganst allowing inappropriate development in the Green Belt as described in PPG2

WD2 - The locaton of Waste Handing and Treatment Faclities - Should be located in or near to the man sources of waste arosing, and should preferably be located witho buldings on exusting or proposed industrial estates where the infrastructure and surrounding uses are approprate Where the design or onentaton of the facmity makes this mapproptrate derelict or despoled ateas, ateas close to ansing, workng or worked out muncral or landifll sites, or existung waste management sutes should be considered

Polacy WD3 - Landfill - In considerng the surtablury af sites the need for the faclity, the tansport telatronship between the sources of waste and the proposed drsposal facility, the cumulave mpact of disposal faclues, and the extent to which waste materalals could assist in the reclamation or mprovement of land

Dicussions/correspondence with plannone officers:

Assessment of Mand Constramt
Possible potental for energy generation from methane gas and from latidfill waste It is paramount however that development minimises impact on the environment The Structure Plan makes provision for generation of power from methane and landfill gas - It is the only country to include reference specificalls to landfill gas at thas level of planning guidance

STUDY OF RENEWADLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXIS'ING ST'RUCT'URE PLANS, LOCAL PLANS AND UDPs

County / Borough Worcester

Plan Status and Planning Tunetable

Current adopted plan March 1998
Plan review status Deposit Draft

Develonment Plan PoLicies		
Renewablesmeger		
	\mathbf{Y}	N
Exusung local pian poley relatang to rencwable energy ${ }^{2}$		X
Comment		
Local plan makes no reference to rentwable enersy sources or energy consers amon		
Potconal constrants to the development of renewable energs resoutces		
	Y	N
Green Belt (Polucies NE11-15)	\checkmark	
AONB		X
SLA/AGLV		\mathbf{X}
Other		
General nature conservation policies		

Previous sturdes of the tethewable encrey tosoutce

None

Exictingtencwable encrgy generation
 None

Previous planming applications/appeals
None

Proposed future platome policues

Proposed Modifications:

The draft local plan makes no specfic teference to renewable energy Energy efficienct and the conservation of tesources are considered

Drecussions/correspondence with platrung officers:

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING ST'RUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough Bndgnorth

Plan Status and Plannung Trmetable
Current adopted plan Sept 1994
Plan review status Pre Deposit

Previous studus of the rencwable energy resource

None

Exisang cenewable energy zeneration

None

Prevous platinity appleations/appeals

There have beeo no applicatons withun the district

Proposed future planning polucies

Proposed Modifications

Am to publish first deposit draft summer 2001, workng towards adopaon in 2003 Wordang of modifications not yet determined

Discussions/correspondence with planning officers:

As part of the Local Plan review process a semes of discusson paper were issued Issues concetming renewable energy were considered as part of the 'environment' paper These papers were considered by the review committee and it was agreed that the deposit draft will melude a polucy on renewnble energy

Green belt designations presume against development Whylst des elopment 15 not precluded from the AONB and other sensitive areas it will be strictly controlled Enzrionmental polacies therefore present a number of sigauficant constrants

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING ST'RUCIURE PLANS, LOCAL PLANS AND UDPs

County/Botough Reddtch

Plan Status and Plannung Tunetable

Current adopted plan Feb 1996
Plan rewnew status Pre deposit

Previous studies of the repewable energy reigutce

None

Exjstang tenewable encrgy generation
None

Etcyous planrung applications/appeale:

None

Proposed future plannute policies

Proposed Modifications

Policies not vet drafted lssues papers beng prepared for consultation

Discussions/correspondence whth plannang officers
Issues papers include a guestion asking what the authonty can to promote energy conservaton There is a cleat intention to include a policy on renewable energy

STUDY OF RENEwABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPE

County/Borough W/yre Forest

Plan Statur and Planning Timetable

Current adopted plan May 1996
Plan revnew status Pre deposit

Deyelopment Plan Policres	
Renewrable coctur	
	Y
Exastug local plan policy relatirg to renewable energy ${ }^{\text {a }}$	
Comment	
Adupted plan does not refer to renewable energy	
Pocenual constratus to the development of renewable energy sesounces	
	Y
Green Belt (Polley GBi)	\checkmark
AONB	
SLA/AGLV	\checkmark
Other	
Poley LA1/2 Landscape Protectron Areas In considerng applicatons for development un the Lindscape	
Protection Area, atcenunn will be paid Partucularly of the proposed development on the landscape	
Polscy LA 7 - Landscape F'eatures The lundscape of th where approprlate, enhancung and managing those sigi woodland, hedgerow, linear feamures, or hisronc landsca	
General policies on mature conservation and agriculture	

Deyelopment Plan Policies
Renewable cocrun

Exustug local plan policy relating to renewable energy ${ }^{\text {² }}$
Comment
Adupted plan does not refer to renewable energy

Green Belt (Polhey GBi\}

SLA/AGLV
Other
Poley LA1/2 Latndscape Protecton Areas In considerng applications for development un the Lindscape Protectoon Area, attenuon will be pald partucularly of the proposed develupment on the landscape

Polscy LA7 - Landscape Features The lendscape of the whole District will be perpenated and safeguarded by, where appropthate, enhancung and managing those signuficant features (skylnes, sates of geologeal importance, woodland, hedgerow, linear fearures, or hisonc landscapes) which make up its essentral character

General policies on nature conservation and agriculture

Pevous studres of the rencwable energy resource

None

Existung renewable energy generation

Ptoposal in local plan for waste to energy plant

Previous planning applecatons/appeds
 None

Proposed future planning policies

Proponed Modifications

None drafted Deposit draft expected ma\} 2001

Ditcuations/cotrespondence whth platining ofllicers:

Potential in the distnct 15 considered to be hrnted Discussion with officers suggests an intentron to promote renewable where apptopnate, perhaps through use of PV on buuldings It is undikely that policies will be sute spectic

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Botough: Bromsgrove

Plap Status and Platining Timetable
Curtent adopted plan No adopted plen
Plan review status Proposed modifications June 2000

Development Plan Poblctes	
Renewable energy	
	Y
Exusting local plan poiç relating to renewable energy ${ }^{3}$	
Comment	
Adopted plan makes no reference to renewable energy	
Potental constrams to the development of renewable energy resources	
Green Belt	
AONB	
SLA/AGLV	
Other	

Premous studics of the renewable energy resource

Existurg renewable energy generation

Previous planning applications/appeals

Appucatoon for a small cluster of wind turbines was refused $5 / 6$ years ago The main consideratoon was the impact that this would have on the setung of a listed bulding 'The stte also fell within protected landscape

Since the turne there have been oo applcaraons

Proposed future planouthe policies

Proposed Modufications

Policy DS13 (sustarnable development) - All developments must reflect the need to am to safeguard and improve quality of life of tesidents, conserve energy tesoutces and protect the Plan area's essential charactertatics and man envronmental assets

Polacy ES15 - Proposals for explorang sources of renewable energy will be carefully considered for their impact on the landscape, wildhfe, and other relevant factors Where the impact of the rechnology being proposed is considered compatrble with both the immedrate and wider community nterests then schemes may prove acceptable

Policy DS9 - Protection of Desigated Enviromrnental Arcas Development proposals in locanoos designated as Landscape Protection Ateas, sites of importance for wildife and natute conservation or of importance for archacolog, will be carefullv evaluated against their potential impact on the landscape, ecology or indridual ste

Policy C4 Catena for assessing development proposals Development will not be permuted where at would have a materially detumental effect on the landscape, in partulalar within Landscape Protectoon Areas When assessung the effect on the landscape special consideration will be green to prominent slopes or mapor ndge lines, woodland and hedgerows, and water features where these are ant important component of the landscape

Policy C20 - Protectaon of High Qualty Agncultural Land Normally the best and most versaule agricultural land will be protected from development whech would lead to an arreversable loss of land, or of land qualtry, for agricultural purposes

Pollcy ES14A Proposals for potentally nousy developments must be located in areas where nose will not be such an importunt consideration or whete 1 impact can be munimised

Discuesions/correspondence with planilig officern:

STUDY OF RENEWADLE ENERGY PROSPECTS IN THE WEST MDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Botough._Malvern Hills

```
Plat Status and Plannung Timetable
Current adopted plan Jen 1998
Plan review status Pre deposit
```


Deyelognent Plan. Policeses
 Renewable enerisy
 Existog local plan policy telatng to renewable energy?
 Comment
 The plan contans two dctaled polucses on renewable energy both supported by detaled explanatory test
 Policy ENV 4 - Renewable Energy Thus genent policy states that proposals for renewable energy nnstallations will be perrnutred prowded that proposals satisfy the tequitements of the Environmental Protection Act 1990, provide adequate vehucular access etc, have potenual to contribute to natonal, regronal or local energy requrements, and do nor confluct with other relevant plan polacies
 Policy ENV 5 detals plannugg applcatuon requrements for wind energy installatoons Proposals are judged against a number of enteria including amenty of residental properties, use of sympathetc colours and mateals, means of connection to the exasting electicitv network, lucation set back from major roads and ratways. Photo montages should be provided to assess the wisual unpact of the development, where apptoprate electronsc mapping or other means of landscape assessment should be used Policy ENV7 deals whth the provison of overhead lines and cables. It areas of particulat landscape qualrty these shoukd be latd underground, elsewhere ther erection should seek to minmuse visual mpact

Potential constrants to the development of renewable energy reseurces

Green Belt
AOND (Landscape Policy 1)
SL//AGLV
Other

Landscape Policy 9 - Landscape Featores Proposals which might affect the skylnes of Marvele [Jdze, The Abbedy Hills, The Suckly Hills and Dog Hill will only be allowed of the effects are minumal or if conditions can be mposed that would munimuse the effect of the proposal.

General nature conservation and agncultural policies

```
Etevious madits of the tencwable cnergy resource
None
```


Exustung renewable enerey generation

Nune

Prevous planning applications/appeals

None

Proposed futute plannilaE bolicics

Proponed ModJficatoons

Consultation draft antacipated end 2001

Discusions/cortespondence with plantung officere

The councal are looking to toll the renewable enet告y poletes forward and update them where necessary but, as yet, no detarled consideration has been given to the specific nature of future poleces

STUDY OF RENEWABLE ENERGY PROSPECT'S IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough: Wychavon

Plan Stotus and Plannume Tirnctable

Current adopted plan Jan 1998
Plant review status Pre deposit

```
Development Plan Paltace
Renewable energy
Existugg local plan polucy relating to renewable energy'
Comment
Policy BC16 - Renewable Energy In determunigg appleatons for renewatle energy developments, the Couthc:l will need to be
satrsfied that there will be no adverse environmental effects whuch would present a risk to health and cafety, loss of residental
amenits due to nomse or other disturbantes, damage to ecologleal and aature conservatuon interests or damage to important
landscape desugnations Applicants are asked to demonstrate the extent that the proposal would contrbute to natronal and local
to encrgy nceds, limungggreen house gases, the ltkely effect of the proposal
on the local environment and the likely impact on the qualutes and character of the area, In addition, proposals will not
nommall} be allowed withun the Cotswold AONB
```

Potental constrants to the development of tenewable energy resources
Green Belt (policy BC2)
AONB (Polectes BCA and C1)
SLA/AGLV
Other
Polseres BC4 and C1- Arcas of Great Landscape Value Development which would adversely affect the lendscape qualry of the Areas of Great Landscape Vatue will not nommally be allowed In considenng des elopment proposals withen the AGLV, the Councll will have specal regard to their effect on the landscape

Policy C2 - Development restrictions in the AGLV The Councl seek to protect the AONB and AGLV from development whth would adversely affect the pnrnary arns of designaton. The Councl whll not normally permut large scale developments, visually obttustve developments, developments creatang nouse, itmosphenc, water or ground pollution, or developments likely to generate large volumes of traffic where these will affect the amenty of the area

Policy BC1 - Developtaent Outside Defined Areas ln areas beyond the Green Belt the Councyl will not normally permit development to take place on the land identfied on the Proposals Map, unless in the exceptional encurnstances defined in other policies of the District Local Plan.

Policy BC3 - Areas of Developroent Restrannt.

General natute conservation and agroultural poleces

```
Ptcrious studies of the renewable energy resource
```

None

Eristine tencyable enctry genctation

None

Previous planning applications/appeals

None

Proposed future plannite polletes

Proposed Modifications:

Policles not yet drafted

Dincussions/correspondence whth plannurg officers

Revisions to the reaewable energy policy will be considered during the revew process in light of the Councils recent comrnuments to sustaunabllty

STUDY OF RENEWARLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Botough: Hereford and Worcester

Plan Stacus and Plannung Timetable		
Curient adopted plaxi. June 1993		
Plan revrew status Draft of Herefordshre UDP expected to be publuched Aurumn 2001		
Development Dian Poluctes		
Renewable energ3		
	Y	N
Exsung local plan polcy relating to ernewable energy ${ }^{2}$ a \mathbf{X}		
Comment		
No polcies on renewable energy		
Potential construnts to the development of renewable entegyt tesources		
	\mathbf{Y}	N
Green Belt	\checkmark	
AONB	\checkmark	
SLA/AGLV	\checkmark	
Other		

Previous studite of the renewable energy refource
None

Exuctongtentwable enetgyenctaton

None

Ercyous planmer applicatoon/appoals

Three planning applications for renewable energy telated schemes in recent years

- Weobler Pamarv School - locally grown coppace buint for energy
- Reeves H لll Wind Farm - refused (landscape - impact on Powys Obscrvatory)
- Power station near Lemmister using chacken manure was approved but oever implemented - the sute is now occupied by alternatrve industrnal use

Propased future platoung pollcics

Proposed Modffications.
No poluces have yet been arafted in respect of renewable energy for the UDP

Diceunaiono / corte prondence with planturg officers:
Officers consider the man constrants to me the $A O N B, A G L V$, and uther important areas for nature conservation

Assessment of Davelopment Prospecti				
	N/A	Long term	Medium term	Short term
Biomass				
$W^{\text {rad }}$				
Hydro				
Solar				
Geothermal				
Comment (including identufication of poss				

Assessment of Man Constrante

County/Borough Hereford

Plan Statur and Planning Timetable

Current adopted plan November 1996
Plan revew status Draft of Herefordshure UDP expected to be published Auturinn 2001

Development Plan Pohcies

Renewable energy
Existug local plan policy relaung to renewable energy ${ }^{2}$
Comment
Policy ENV10 states that development proposals for renewable energy projects should not be
a) eovironmentally acceptable and not lead to unacceptable adverse effects on the amentry of neighbouring properbes and uses, partacularly in respect of residentral and other senstupe uses,
b) be acceptable in terms of 1 ts effect on the local hughway netwotk, access, curculation, and the promsion of car parkng and uperational space, and
c) be in accordance with other relevant poluces, partucular in respect of such mattets as the conservauon of the bull envronment, countryside, landscape and nature conservatuo
In nssessing proposals for rencwable enera projects, tegard will be had to the wider environmental benefits to be gamed from the explotation of renewable energy sources

Potenpal constrants to the development of rencwable energy.resources

	\mathbf{Y}
Green Belt	\mathbf{N}
AONB	\checkmark
Natoonal Park	\checkmark
Other	\checkmark

Previous mondel of che renewable energy resource

None

Exasting renewable energy xeneration
 None

Previous planoing applications/appeals
 None

Ptoposed future plannine policies

Proposed Modufications
Thus document will be teplaced by the Herefordshire UDP No renewable energ polscees have yet been drafted for the UDF

Discursions/correspondence with planning officers

STUDY OF RENEWADLE ENERGY PROSPECTS IN THE WEST MDDANDS

 REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPE
Councy/Botough_Leornunster

Plan Status and Planome'Thetable

Curtent adopted plan 1999
Plan review status Draft of Herefordshire UDP expected to be published Autumn 2001

Development Plant Policies

Renewable energy
Existong local plarn polucy relating to renewable energy?
Comment
Policy A 46 Proposals involving buldngs and infrastructure for the production of renewable energs would only be permitted where

1) They would not adversely affect the handscape quality of areas of Great Landscape Value,
2) Outside areas of Great Landscape Value, there would be dettrnental effect upon the arnenuty, character and appearnice of the partacular landscape quahes of that location
3) The amenty of residents in nexghboung properues would not be signaficantly hatmed, partuculatly through nouse or electro-magrituc interfereace
4) The proposal would not sigutficandy detract from features important to toumsm, includng where appropmate, distant news of them
5) The traffic generated dung the coostructon of the proposal could be accommodated wathout detriment to the safety of the hughway network and the environment.
(G) The proposal would not result in distraction of davers where this would adversely affect lughway safety
6) The proposal satisfies general development criteria (policy A1), partucularly with regard to environmental desugnatons, residental amenty, traffic generation, scale and character
The explanatory text states that this is an mentem policy whech will be reviewed at such a tume as strategic guydance is published in furne alterations to the Hereford and Wortester Countv Structure Plar, or successrve documents

Potental consmants to the development of renewable energy resources

Green Belt	\mathbf{Y}	\mathbf{N}
AONB	\checkmark	\checkmark
Natoral Park	\checkmark	
Other		

Previous studies of the renewable energy resource

Existing renewable enctoy genctaton

Previous planiung applications/appeal

Propased future planning policies

Proposed Modificatioth:

Thes docurnent will be replaced by the Herefordshire UDP No renewable energy polces have yet been drafted for the UDP

Discussions/correspondence wath plannigg officers

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/borough Souch Herefordshure

Plan Status and Planning Timetable

Current adopted plan February 1999
Plan review status Draft of Herefordshure UDP expected to be published Autumn 2001

```
Dgrolopment PIan Polncies
Renewable energy
Evusung local plan polucy telaung to tenewable energy*
Y N
Comment
Policy C 39A Proposals for renewable energy mnstallations wulk be favourably considered ptovided that
1) The proposal does not have an adverse effect on }\triangleONB, ^GLV, or other areas of conservaton mmportance where thes
    effects cannot be successfully amelorated
2) The proposal does not have an adverse effect on the ressdential amernty of nearby propertues by vartue of disturbunce
    through nove or other pollutants
3) That any associared infrastucrure, buldings and constructen wotk will not have anv adverse effects on the landscape or
    local amenuty
Potental constrauts to the derelopment of renewable eneray resources
Green Belt \
AONB
Natuonal Park
Other
```


Provious studies of the renewable energy resource

Exisung renewable enerey genctation

Peylous planmink application!/appeals

Etoposed futote planning policren
Proposed Modffications
Thus document will be replaced bs the Herefordshire UDP No rencwable energy polices have yet been drafted for the UDP

Diccussione/cortespondence whth plarning officert
Impact on landscape quality, conomuc or tounst potental is of partucular concern to the District

Plan Statue and Planning Timetable

Current adopted Plan Aptul 1991
Plan review status Staffordshire and Stoke on Trent Structure Plan Deposut Draft August 2000

Prevous studica of the renewable energy tesource

Windspeed map produced by ETSU
NFU studies on short crop rotzaon coppice and other bro-fuels

Existing renewable energy gefneration

Poplars Fill landfill near Carnock 3MW Expansion antucpated
Waste to Energy Plant at Harford Stoke on Trent
Small scale hydro electuc scheme in Staffordshure Moodands
Small scale trials in Forest of Mercia
Solar panels at W'Incote Juntor School, Tamworth
(proposed unsallation of wood butrung stove at Chasewater Innovation Centre)

Previous planning applications/appeilit

No information

Propored future plannune policiet

Proposed Modifications. (from Depost Draft, August 2000)
Policy D1 states that "Sustamable forms of development will be sought wheh menmyse the consumption of all tesources, partrulatly those which are non tenewable such as land (especially the best and most versatule agracultural and) and munerals D7 - In assessiog developmeot proposals, measure which help to conscrve natural resources will generally be supported These include "use of renewable energy resources for the defelopthent uf renewable energy generating installations such as wind arbines, will be considered on their merts, having regand to any potental adverse mpacts on local people and the local environment: Developments should also be cacouraged to incorporite photovoltaics or other tenewable energy genetators where appropnate "
Policy D4
Policy D5B - Inappropnate development withu Green Belts will not be permutted extept in vety special circumstances Construction of new buildings may be appropriate in the followng curcurnstances limted infiling, agtuculture and forestry, sport and recreation, extenshons to exisung dwellings
D6 - The best and most versaule agmeultural land will be protected from development Where development of such land is perturted it should as far a possible be on the lowest grade of land sutable for developroent.
NC2 - Landscape Protectron and Restoration
NC3 - AONB
NC4 - The acceprabiluty of development phopusals outside the boundary of the Peak Distret Natuonal Park will be assessed having regard to the need to ensure that the appearance and valued charactensacs of the Natronal Park are not adversely affected.

Discussions/correspondence with plannuge officers

$W_{\text {ind }}$ farms are considered to be a viable option, but there are concerns over the msual and aural mpact 'The areas of hughest wind speed tend to concide wath those areas most used by wallers and clumbers Issues of open access and amenity value ate thetefote likely to be important considerataons

Upland and topographcally exposed areas of the county (Notth Staffordshire) may be surable to generation of enctgy from wind power Visual impact and noise are however impottant consideratorns

STUDY OF RENEWABLR ENERGY PROSPECTS IN 'THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPS

County/Dorough Peak District Natunal Park

Plan Status and Planning Timetable

Current adopted plan Structure Plan - Aptll 1994 Local Plan - to be adopted end 2000
Plan review stantis

Development Plan Policies	
Renewable energy	
	Y N
Existing local plan policy relating to renewable energy?	1
Comment	
Structure Plan - Does not refer specifically to tenewable energy but states that "Small scale development to senerate or store energy to meet local need will nomally be permitted prounded that t dots not detract from the appearance of the landscape or the buildngs it serves"	
Local Plan - "The development of a renewable energy works including transmission lines can be accommodat the area."	ancillary ed uses o

Botential constrants to the development of reowable energy resources

Green Belt
AONB
Natonal Parl
Other

In 1995, Land Use Consultants carmed out a study of the east mollands potental renewable energy resource, including the whole of the Peak Distact National Patk on behalf of DTI' This concluded that grven the exnsong planrung constrants, that there is only a very small practucal renewable energy resource withan the park

Existung renewable energy generation

None

Previous planninu applications/appeals

A recent application was submutted for a small scale wind turbine on a sungle property Whulst permisson has not yet been granted officers feel that thus is likely to go ahead

Proposed future plarming policies

Proposed Modtificauons

Local plant is in it final stage of adoption

Discussions/correapondence whth plannuot officers:
Planning officers are fanly kecn to encourage the use of renewable energy, but feel that potential is tather limated

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough Stoke on Trent

Plan Status and Planning Timetable

Current adapted plan September 1993
Plan review status Early stage of remew

Development Plan Polvcies		
Resewable energy		
	Y	N
Exisung local plan polhey relating to renewable energy ${ }^{\text {a }}$		
Comment		
Potenud constamis to the development of renewable energy tesources		
	Y	N
Green Belt ${ }^{\text {b }}$		
AONB ${ }^{\text {a }}$		
SLA/AGLV		
Other		
Policy GP13 - Protection of hullside and nidgelnes		

Prayions Bitudien of the tenc vable encrey tenoutce

Studv of renewable energy porentral at the Chatterly Whutfield Collery Complex

Exutury renewable energy generation

Stoke Incanctation Energ, Plant

Previous planning apphcatons/appeale

Proposed funure planning policies

Proposed Modifications.

Antrcpate deposit version of the Caty Plan to be published in cady 2001
Draft City Plan discusses renewable energy in some detall in the explanatory test, but a specific policy has not yet been drafted
Dincunsions/correnpondence whth planning officers

STUDY OF RENEW/BLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXIST'ING ST'RUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough Cannock Chase

Plan Statue and Planning Timetable

Current adopted plan March 1997
Plan rennew starus

```
Development Plan Policres
Rencwablecnergz
Existriz local plan policy relating to renewable energy?
```


Comment

```
Policy PEPG states that power generatom from renewable cnergy sources will be perrntted provided that the development does not cause harm to interests of acknowledged importance. Proposals for the erection of wind turbines will be requrred to satasfy a number of detaled catera prinarily concerrung enviranmental effects Proposals for wind turbines in the \(A O N B\) will not be pemmitted where they bive a sugnicant mpact on landscape quality
```

Potentalal constraints to the development of renewable energy resources
Green Belt (Polcues C1 7)

AONB (Pollcy C8)
SLA/AGLV
Other
Policy C16 states that the best and most versatule agncultural land will be safeguarded from development and changes of use
Policy $\mathrm{C8}$ seeks to tonsetve and enhance the landacape, nature conservation, and recreation interest of the
AONB Only development that is compauble with the natural beauty of the AONB will be perinted Proposals for developroent on the fringes of the A ONB will be consudered in the context of the ptimary objectse of protecting the Areas qualitues

Previous studies of the renewable energy respurce

Exusting concyable energy peneration

Previous planning applcations/appeate

There have been no planning applications in respect of renewable energy withun the last two years

Proposed furtite plannloz policien

Proposed Modufications
Locil plan revnew is an early stage

Discussions/correspondence with plannane officers:
Plan to take a more detaled assessment of the tenewable energy resoutce avalable in the district as part of the Local Plan Revew process

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPG

County/Borough_Lechfield

Plan Status and Planning Timetsble
Current adopted plan June 1998
Plan renew status. Local Plan revew process has not yet statted

```
Development Plan Policies
Rencwable energy
Exusung local plan polucy relang to renewnble energy?
Comment
Polcy E20A states that the Distret Councll will support proposals for the producton of power from renewable energy sources
provided there is no unacceptable impact on the environtremt and that it is min accordance woth other plan polucies
Potental constrants to the deyelopment of renewable energs resoutces
Green Belt (Polucies E4 and E5)
AONB
SLA/AONB
Other
Pulic, E6 - Development in Rural Areas In rural areas development will not be permitted outande the willage boundames except where the proposal meets other policy, including that on amenty and design
Policy E7 - Areas of Special Protection The District Councl propose to grve specal protection to the Cannock Chase Area of Outstandrg Natural Beauty, Special Landscape Ateas, and Areas of Local Landscape Value Policy E8 - Protection of Agrouttural Land The use of best and most versatule agncultural and for development not associated with agnicultute will not be permitted unless there is a strong case for development which overndes the need to protect such land
Policy E10 - Agticultural Diversafication The District Council will supputt the diversification of existang agricultural actornes pronded that design, layout and location is acceptable in landscape and conservaton tems and the use is compatable with a rural location and consustent with polcices for the Green Belt and ural area.
```


Previous studies of the cenewable energy respurce:

None

Exjsung rencwable energy zeneration

None

Prevous plannung applcavons/appeals
 None

Local Plan review has not yet started
Dincussions/correspondence with planrung officers

Astessment of Development Frospects

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough South Staffordshire

Plan Status and Planning Timetable

Current adopted plan December 1996
Plan review status.

Development Plan Policies

Rencwable energy

$\mathrm{Y} \quad \mathrm{N}$

Exisunt local plan pohcy reluang to renewable energy ${ }^{2}$

Comment

Polacy RE1 - Detalled polity specifically addressing renewable energy Proposals for the generaton of power from renewable sources will be permitted prouded that the proposed der elopment would not cause demonstrable harm to interests of acknowledged umportance. Proposals for renewable energy profects are required to fulfil cntera relatig to nature conservation and envronmentul mpact, landscape quality, amenty to local tesidents, tlecttomagnetuc disturbance, hughways, and site restoration 'The polics states specifically that proposils for mind turbines within the Cannocls Chase AONB will not be permitted whete the $\}$ would have a sygnificant adverse effect on landscape qualty

Potental constrants to the development of rencwable enscay resources

	\mathbf{Y}
Green Belt	,
AONB	\checkmark
SLA/AGLV	\checkmark
Other	
Pobey OC1 - Open Countryside Withan the open countrysude development will not normally be permited unless it is essental to the operation of agacultural, forestry, or other actuntes appropinate to the rutal atea, is lumited infilling, of involses the te use of a rural building	
Policy C2/AGi-Agncultucal Land The use of the best and most versate agreultural land for any form of irreversibic non agncultural development wall not normally be permitted	
Policy LS7 - Specal Landscape Area. Permussion will not be granted for development whach would adversely affect the spectal landscape chatacter and nature conscrvation value of the area urless the reasons fort	
development outwergh the value of the site, thete is no alternatrye ste, the proposal makes a contribution to natonal or local objectrve and does not conflect with other local plan polteres	
LS 12 - Cannock Chase AONB Within the AONB development will be testreted to uses compatable with conservation of the area.	

Previous studies of the renewable energy resource
None

Exastingtencwable.energy generation
 None

```
Prcyous planmung applications/appcals
None
```


Proposed fature plarning policies

Proposed Modifications:
Local Pian neview is at an early stage

Discumens/correspondence with planruig officers

Assersment of Man Constraints

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/B-orough: Staffordshure Moorlands

Plan Statue and Plannitoe Timetable

Current adopted plars Septernber 1908
Plan revew status

```
Development Plan Folucses
Renewable energy
Exustng local plan polscy relarng to tenewable energy*
Comment
FB - Power Genceaton
Planning pecmitsson will be granted for development for generatoo of power from renewable energy soutces, unless the site les
Whthin the Green Belt, ptowded that it does not have a sugmficant adverse impact on the landscape or sucrounding land use's
and creates no unacceptable amenty or nouse problerns for local residents Thus is of partcular importance in relation to
conservation areas and to open countrysde
```

Potental constrants to the deyclopment of reneyable energy resources
Green Belt Pollcy N1/2
AONB
Poltry N7 - Development wheh would mure the gisual amenty of the Green Belt by virtue of its stung,
materals or destgn will not be permitted in locations which are whthin or visually conspscuous from the Green
Belt.
Folcy N8 - Special Landscape Area Permussion will not be given for development wheh would materally
detract from the high quality of the landscape, because of its steng, scale, design and maternals and atsociated
traffic generatom. In arcas where the special landscape areas overlap whth the green belt there will be a
presumption aganst most development th accordance with Policy N2
Policy N11 - The Peak National Patk - In consideting proposals for development on land conspicuous from The
Peak Natonal Park, the councl wall have regard to the need to ensure that the visual atnenutes of tat land are not
adverscly affected to the detrment of the Natonal Patk
N27-Agrteultural land - Best and most versatile agncultural land will be protected from development

Brewloun nuduen of the renewable energy regource

No renewable energy resource studes in the Staffordshure Moorlands

Exacuin tenewable chetgy zeneration

No renewable energy plants in operation or under development in the Staffordshure Moorlands

Prevous plannung applcations/appeals
 None

Proposed future planning policies
Proposed Modificatonc-
Early stage of review

Discussions/correspondence with planning officers
If rencwable energy genemton is to go ahead in the District Council will need to be assured that the landscape impact is acceptable The Distract Councl is coocerned partucularty because large areas of the drstnct are green belt or lie adjacent to the natonal parle where protection of the open countryarde and attractive landscape will be given pronty

Assersment of Deyalomment Prospect:

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPE

County/Borough Tamworth

Plan Status and Plannung Timetable

Current adopted plan Jan 1995
Plan review status. Local Plan renev is at pre consultation stage

Deyelopment Plan Pohcies		
Rencwable eneren		
	Y	N
Exisung local plan polrey relating to renewable energy ${ }^{2}$		\mathbf{X}
Comment		
No policies refer to renewible energy		
Porential constrants to the deyelopment of rencwable eneres resources		
	\mathbf{Y}	N
Groen Belt (Polucies Ne9 11)	\checkmark	
AONB	X	
SLA/AGLV	X	
Other		
Polcres ne13 and nel4 seek to protect the chatacter and appearance of 'Green Wedges' and 'Greent Cottido		
Policy ne16 protects the most versate agmeultural land aganst development		
Polyty ed88 sets out a range of extemal and internal nouse lesels Nouse sensinve developments will not be pernutted where these levels cannot be compled with.		

Previous studte of the tencerable onctey rosolures

None

Exigtung renewable energy generation
None

Previous plantung applications/appeals

None

Ptoposed future plannugg policies

Proposed Modificationp*
Local Plan review is at pre-consultarion stage Issues for consultation have been idenafied - these do not refer directly to renewable energy

Discussions/correspondence with planning oflicera

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPA

County/Borough Newcastle under Lyme

Plar Status and Plarning Timetable

Current adopted plan May 1995
Plan review status. Local Plan 18 at an early stage of review

Dryclopment Plan Pollcies		
Renewable eners		
	Y	N
Exisung local plan polery relating to renewable energy ${ }^{2}$		x
Comment		
Porental constrains to the development of tenewabte energy resources		
	Y	N
Green Belt (Pollcies G1 - see attached)	\checkmark	
AONB		\mathbf{x}
SLA/AGLV	\checkmark	
Other		
Polcy St - Sustantable Development. In deternuring applicators for all types of development the Council wil have regard to the likely effect of the development on natural tesources that cannot be replaced		
Pohcy \$2 - Conservation of Agncultural Land - The councll will protect grade 1, 2, or 3a land against development of an irreversible nature		
Pohces G3 and G4 - Special Landscape Area lunntaton on development/sitrog of development The Councll will protect the SLA from development that would hatm the visual quality of, or motroduce a discordant element into the landscape Developiment that is justofied must be sited and designed in such a way that it enhances the quality of the landscape		

Previous studies of the renewable energy resource

None

Exstutuetchevablesnergy generation
 None

Prevoous planning applications/appeals
 None

Proposed futute platruag polleles
Propored Modiflcation:
Local Plan is at an eatly stage of revew
The Local Agenda 21 Environrnental Strategy is currently being reviewed - thas will incoporate reference to renewable eaergy sources
Discussions/correspondence with plannug officers

STUDY OF RENEWABLE ENERGY PROSPECT' IN THE WEST MLDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDP.

County/Borough East Staffordshure

Plan Statur and Planang Timetoble

Current adopted plat2. March 1999
Plan revew status Local Plan review currently underway

Development Plan-Policies

Bencyable energa

Exisung local plan politev telatig to renewable energy ${ }^{2}$
Comment
Policy EN42 refers to the need for development proposils to make provision for a hugh standard of energy efficiency but does the plan does not make specific teference to energy from renewable sources

Potental constranns to the development of renewable energy tesourctes
Green Belt (Policies En4/5)
AONB
SLA/AGLV
Other
Policy En1 - Development in the countryside
Policy En6 - Specral Landscape Areas
Polty En10 - Derelopment of the best and most versarle ggtrultural land will not be permitted unless there is an overnding need for $1 t$, which cannot be met elsewhere

Pevious ctudxe of the tenes able ancragy tesource

No studies of renewable energy undertaken whtho the area

Existingtenewable energy generation
 There are no exdstng tencwable energy plants operating or under development in East Staffordshire

Previous planning applicactonc/appenin

None

Pcoposed future planzing policies
Proposed Modifications

Discussions/correspondence with planning officers

Local Plan revew ss currently beng undertaken. In the amended local plan policles concemung renewable eoergy are likely to be socluded
The Councils man concem is the 1 ssure of the envitonmental impact of wind farms on Areas of Special Landscape Value and the adjoming Peak District National Park

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING ST'RUCT'URE PLANS, LOCAL PLANS AND UDPS

County/Borough Watwickshire

Plan Status and Planning Timetable

Current adopted plan Sept 1991
Plant review status. Deposit draft 2000

```
Developmenr Plan Policies
Renewable energy
Exisung local plan polcy relatmg to renewable energy`
Comment
The adopted plan makes no reference to renewable energy
Potental constrants to the development of renewable eneres resources
Green Belt (see Policy G4 below)
AONB
SLA/AGLV
Other
Polecy G4 - Withun the Gteen Belt the rutal character of the area will be retained, protected and whenever possible enhanced by safeguardug areas of manly opent country to take account of the interests and nieeds of agaculture and forestry and provide a source of recreation and enjoyment Development will not be permtted except in very special circumstances, for purposes other agnculture/forestry, single dwellengs, re use of redundant sites, outdoor sport/recreation
Poles E5 1 - Within the AONB prtority will be gren to the consideration and protectron of the landscape Exceptons may include, proposals for small scale developments whin are essentral to meet local communuty needs, proposals for small scale recreational facultues, and those directly related to aguculture and forestry Policy G3 3 - The Council will support the re establishment of the Forest of Arden and the concept of creang a new nauonal forest
Policy G4 - Wherever possible, derelict land, or land of no agricultural value will be used for development.
Policy G6 - The general area covenng Bedvorth, Nuneaton, Atherstone and along the Tame Valles will be designated an environmental enhancement zone Thus rren will be given pnonty in terns of schemes to improve the urban and rural environments.
Policy E4 1 - Encourages the diversification of the tural economy prowing that the landscape qualits and character and unldufe habtats are protected
Policy E5 - Special Landscape Areas (5 listed) ment conservation and protection from severe pressures for developrnent or intensus recreatonal use.
Poley E11 - The ultimate disposal of household and mdustral waste will be by landfill In determinng the selection of suitable sites, the filing capanty of a site and sumable waste matenals, regard will be had to is ularnate restoration 7 catecia are listed covering impact on landscape, restotation use, drainage and the monutong and treatment of gas
```


Previous studne of the tene wable energy rethoutce

None

Existung renewable energy generation

Bio taass project - limited progression. Expenment now underway at Gaydon (Ford)
Landfill gas to electricity sites at Packington Landfill Sure in North Warwnckshice Borough, Judkun Landfill Site in Nuneaton, Smuths Landfill Site at Bubbenhall, Ufton Landfill Site and the former landfill stte at Ryton Lang Hall Landfill site 15 to serve the National Gind from mid Sept The envitonmental impact of these sites has been self contaned

Prevous plannong apphcatuone/appeals

No Informaton

Proposed future plannuls pohcies

Propaced Modifications: (from deposit diaft, 2000)
Policy GD1 states that that "The overnding putpose of the Structure Plan is to provide for a pattern of development which conserves resources of land and energy, includng minerals and water, and makes maximum use of renewable energy source " (one of 6 ams)
Policy GD6 - Local plans should specify policies for the restucaon of mappropnate dewelopment in the Green Belt
Pollcy RA5 - ln fural areas, der elopment, other than for munerals and waste, should be provided for in local plans spectically to meet the needs of the local populaton and to support rusal communtues
Pollcy ER1 - Development will only be permutted where it Ls consistent with protection of the environmental assets of the Countv and the mantenance of the character and quality of ats towns and countryside
Pohcy ER2 - The environmental unpact of all proposed development must be thoroughly assessed if adverse mpacts can not be muggated to acceptable levels, development will not be permited
Polacy ER 3 - The Cotswold $A O N B$ will be subject to most ngorous protection Development will only be permitted where it is consistent with the conservaton of the natural beauty of the landscape Local plan policies should requre the hughest standards of design and prevent large scale development
Policy ER4 - Reference to Special Landscape Ateas broady as in adopted plari Additional desiguation - Landscape Enhancement Zones - new development are expected to contribute to the restoration of the environment.
Pollcy ER9 - The Waste Local Plan for Warw rckshure should provide for a reducton in waste grong to landfill of at least 14% by 2005 (in line with Govemment Gudance)

Discubsions/cortempondence with plantuite officen

Whist it is the County's intention to acheve along term reduction in landfill, in the shorted term there may be potential to generate power from waste. The Deposit plan states an intenton to make maxumum use of tenewable energy resources, however gren phtsical constrants this contributon to natomal targets is likely to come from 'combuctuble, or digesuble industrnl, agricultural and domestac waste' Local objecton to such schemes is considered to be a algruficant constrant its development
The re establishment of the Forest of Arden may provide a renewable energy resource Bro mass 15 considered to be a possubilit in temis of promoting farm diversification.

STUDY OF RENEWADLE ENERGY PROSPECTS LN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough. Warwnck

Płan Status and Plannurg Timetable

Current adopted plan Apnl 1995
Plan review status Early stage of review process

Other

Prevous studjes of che repervable enet Extesource
None

Existing renewable energy generation
 None

Prevous planfung applicatuons/appeals

None

Ptoposed future planning policies

Proposed Modifications

Issues papers to be published Sping 2001

Ditcussions/cortcspondence with planning officers
Renewable energy will be consldered but precise wording/focus of policy 1s, at present Uncertan

STUDY OF RENEWABLE ENERGY PROSPECT'S IN THE WEST MIDLANDS REYIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPa

County/Botought_Stratford upon Avon

Plan Status and Planning Timetable

Cutrent adopted plan May 2000
Plan review status Review to commence summer 2001

Development Plat Policias	
Renewable encray	
	Y N
Existing local plan policy relating to renewable energy ${ }^{2}$ (
Comment	
Adopted plan makes no reference to renewable energy	
Potental constrains to the development of ternewable energy resources	
	Y N
Green Belt	\checkmark
AONB	\checkmark
SLA/AGLV	\checkmark
Other	
Policy ENV7 - The Distnct Authonty will take full account of the need to protect and maintain the historic character of the landscape	

Previous ctudtes of the tenc able ancrgy tesource
None

Existing renewable energy generation

None

Previous plannong applications/appeale

None

Proposed future plamilo

Proposed Moduflcatoons

Officers are keen to address renewable energy through the local plan review process The absence of a policy in the May 2000 adopted plan is a result of a length process of revew The current adopted plan therefore reflects policies drafted intialis in the eatly 1990s, before the publucatoo of PPG22

Discussions/correspondence with plannung officers

STUDY OF RENEWABLE ENERGY PIROSPECTS LN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

County/Borough. North Warwickshite

Plan_Statuc and Plumitue Timetable

Curtent adopted plan Adopted 1995
Plan review status Consultation on 15sues papers

Development Pran Polucies		
Renewable energ		
	Y	N
Exusteng local Plan polucy relating to renewable energy ${ }^{2}$		X
Comment		
Exustog plan makes no reference to renewable enetgy		
Potconal constrants to the de elopment of cenewatle energy tesoutces		
	Y	N
Green Belt	\checkmark	
AONB		X
SLA/AGLV	\checkmark	
Other		
Pohcy ENV4 - Landscape Improvement		
Policy ENV6 - Within the SLA development which would adversely affect the quality or character of the landscape will not normally be pettrutted ENV7 - Envitonmental Enhancement Zones		

Previous studies of the renewable enerey resource
None

Existing renewable energy generation
None

Preybus olatontozaplications/appeals

None

Proposed future olantume policies

Proposed Modricetions:

Plan will address renewible energy but policies not yet drafted

Dtecuserons/correspondence with platume oficers:
Officers would like to include a policy makng specfic reference to copping and solat power Members have concems over wind farms Concem that a detaled policy, referring to specific technologes might not stand upto appeal

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPG

County/borough Nuneaton and Bedworth

Plan Status and Planning Tumetable

Current adopted plan1 Februaty 1993
Plan review status lssues paper produced 2000 Deposit. Dtaft plan to be issued March 2001

Development Plan Polictes		
Rencwable energy		
	Y	N
Exisung local plan policy relating to renewable energy?		X
Comment		
Adopted plan mukes no reference to renewable energy		
Potenupl constraints to the dez-elopment of renewable energy resources		
	Y	N
Green Belt	\checkmark	
AONB		X
SLA/AGLV		X
Other		

Development Plan Policies
Renewable energy

Exisung local plan policy relating to renewable energy?
Comment
Adopted plan mukes no reference to renewable energy

Porenupl constants to the de elopment of rencwable enerxy resources

Green Belt

SLA/AGLV
Other

Pzevious studies of the renewable energy resinutas

None

Existing rencwable enetgy gentation

None

Ptemous planmine applications/appeale
None

Proposed future planming policies

Propored Modifications:

Ditculsions/corrcspondence with plarning officers
Revew process is in rts carly stage Pohcres have not been drafted Issues papers do not specifically address renewable enetgy

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDP'

County/Borough_Rugby

Plat Statusand Planming Timetable

Current adopted plan 1997
Plan revew status lssues papers beugg prepared Deposit draft expected late 2001

Develogment Plat Polccics		
Renewable encrey		
	Y	N
Exisung local plan polcy telating to renewable energy	\checkmark	
Conument		
Policy R/E19 - Renewable Energy		
The Borough Council will nomally permut proposals in relation to the provision of renewable eaergy if the comply with the following cittena		
1 The design and situng of the development does not adversely affect the chatacter and appearance of its surtoundings,		
2 That and dwellungs or business premrises in the wictity are not affected,		
3 That development is located at a satsfactory distunce from any buldeng, road, ralway or nght of way,		
4 That arrport tlyght paths are not adversely affected,		
That the proposal comples with the general standatds of development in policy $\mathrm{R} / \mathrm{G} 1$ and any other relevant local plan policy		
Lunks to other policies and potental constraints to the development of renewable energy resources		
	Y	N
Green Belt	\checkmark	
AONB	X	
SLA/AGLV	\checkmark	
Comment		

Preyious estumates of the renewable energyteroutce:
None

Exustong rencrable enetys enencration

None

Previous planning applucations/appeale

Lack of commercial interest

Proposed future plannomppolicies

Proposed Modificatrons
Review 15 at an early stage lssues papers are beng prepared

Discussions/correspondence with plannang officers:

STUDY OF RENEWABLE ENERGY RROSPECT'S IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDP'

County/Dorough Bitmingham

Plan Status and Planning Timetable

Current adopted plant Jul\} 1993
Plan review status Draft Alteratons published 2000 Puble consultation held April to June 2000

Development Plan Pobicies		
Renevable encrgy		
	Y	N
Exsitung local plan policy relating to renewable energy ${ }^{2}$		X
Comment		
Potental constramst to the derelopment of renewable enengy rescurces		
	Y	N
Green Bielt	\checkmark	
AONB		x
SLA/AGLV		x
Other		

Previous ctudics of the renewable energy resource

None

```
Ex1stung rencywablechcrey meneration
Energy is produced from the waste plant at T', seley No other renewable energ% schemes
```


Ptcylousplanming applcations/appeals

None

Proposed futurc plannung policies
Propoted Modificauons Deaft Aterations 2000
Alteratoons incorporate policies to murwnuse energy consumption and carbon dioxde emissions in aew developments No direct reference is made to renewable sources under the 'energy' headng Howevet, Policy 377 Arr Quality, states that the City Councal is comontted to improving arr quality through the use of alternause clean fuels Polfcy 367 states that waste incinerators prowde an effichent means of teducing the amount of waste for disposal and an opportuntry for enetgr, recovery

Discussions/correspondence with planning officers.

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REYIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPG

County/Borought_Walsall

Plan Status and Plataning Tumetable

Current adopted plan Jan 1995
Plan revrew status Deposit draft expected February 2001

Development Plan Pollcses		
Renevable energy		
	Y	N
Exisung local plan polcy felating to renewable energy ${ }^{\text {a }}$		X
Comment		
Potental construnts to the deseloppient of renewzble energy resources		
	Y	N
Green Belt (Proposals ENV 1)	\checkmark	
AONB		x
SLa/agly		x
Other		

Prewious studiel of the tenewable enetgy resoutce
None

Existins rencyable cncxay_ceneration

None

Previous planning applications/appeals

None that planting office aware of Physical charactensucs do not lend themselves to wand or water power

```
Proposed future plannung policies
Proposed Modrfications:
It 1s antucppated that the first deposit draft of the Walsall UDP will be publushed in February 2001 This will include one specific
policy refernng to the development of energy from renewable soutces
Discunsions/corrempondence with planning officers
```


STUDY OF RENEWADLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPs

Country/Botroush.Sandwell

Plan Status and Plannute Timetable

Current adopted plan. 1995
Plan teview status First deposit draft has been produced

Previous studies of the renewable energy fesqutce

None

Exisung renewable encrey fenctation

None

Preyous platimineapolications/appeals
 None

[^20]
STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING ST'RUCTURE PLANS, LOCAL PLANS AND UDPL

County/Borough Solhhull

Plan Status and Plannung Tumetable

Current adopted plan Aprul 1997
Flan revnew status Issues papers produced March - Apal 2000 Deposit draft due to be published 2001

Development Plan Policies		
Renewable cocraxy		
	Y	N
Exisung local plan polcy telating to tenewable energy ${ }^{\text {a }}$		X
Comment		
Potental constrants to the deyelopment of tenewable energy tesources		
	Y	N
Green Belt (Pohces GB1 3)	\checkmark	
AONB		x
SLA/AGLV		x
Other		

Prevous studies of the renewable energy resource
 None

Existing renewable energy gencration
 None

Previous plannung applications/appeals

None

Proposes future plannung policies
 Proposed Modrfications:
 Eatly stage of revew

Discussions/correspondence with planning officert

Planning officers are keen to include a polcy regarding the generation of waste from energy, but this is at an early stage of thought.

STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MLDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPG

County/Borouch. Dudley

Plan Status and Platuning Timetable

Curtent adopted plan Nor 1993
Plan review status Deposit draft - ${ }^{\text {nid }}$ deposit to be tssued Spring 2001

```
Development Plan Policlse
Renewathle energy
Exsung local plan polkcy relaung to renewable energy
Comment
Policy 50 The councl wull encourage and support the development of renewable energy products pronded thet the visuil and
enurommental impact on the surrounding area is acceptable Where applucable the proposals should be supported by an
environmental assessment study
Lanks to other polices and potential constramts to the development of senewable energy resources
Green Belt (Policy GB1/2)
AONBX
```

```
SL//AGLV
```

SL//AGLV
Other
Comment
Polscy 30 - Landscape Enhancement. The council will seek to mantann and enhance the character and quality of the landscape of the borough through drect action
Policy 31 - Landscape Hentage Areas Withen landscape and hernage areas, the councul will, as appropuate and possible emplay all its prowers to prevent any development talang place wheh would be detrmental to the chamacter and quality of the landscape
Policy 32 - Landscape Hentage Areas - The Councll will seek to protect and enbance views withun and on the penphery of landscape hentage areas

```

\section*{Previous cstimates of the tenewable energy resource \\ None}

\section*{Exishnz concuable enerxy reneration}

None

\section*{Previous planning applications/appeals}

None

Proposed fucure planning policies
Proposed Modifications
None

Diacussions/correfpondence with plantung officers:

\section*{STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPS}

\section*{County/Borough Coventry}

\section*{Flon Staus and Planning Timecable}

Current adopted plan March 1993
Plan review status Deposn Draft 1998 Proposed modificators published for consultation in July 1999 Further proposed changes put forward followng Public Inquiry in May 2000

\section*{Dcyelopment Plen Policies \\ Rencevable energ;}

Exisung local plan polcy relatang to rencwable energy \({ }^{2}\)
Comment
No specific policy telateng to renewable energy Polucy G2 states that the City Council will eacourage antuaves that assist with the conservation of energy The explanatory text refers to future potental to contribute to energy efficiency by using waste heat from the Waste Reduction Unit to generate electicity

Potential constrants to the development of renewable, energy fesources

Green Belt (Policies GS5/6)
AONB
SLA/AGLV
Other
BE21 Landfill Gas. The City Council will assess the msks of landfill gas generation from both actuve and closed
landfill stes, and will take steps to prevent danger or damage to people and the envitonment
Policy Sc122 - Xaste reducton by incuneration will reman the principal means of handing waste disposal in Coventry
Polcy SC23 - Landfill In considerng appleations for landfill operations, regard will be grven to the effect of the proposal on the environment, the nature and adequacy of after use proposals, aquifer protectron, traffic, amentr and other public health consideratoons, together with the proven aped for the specific faciluty

\section*{Previone studies of the renewable energy resource}

None

\section*{Existug reneyable enerty gencration}

Whaste to Energy' plant at Bar Road uses heat to provide energ, for industral premses

Excylous plammink applications/appeale

\section*{Proposed fuatute plannute policics}

Proposed Modificatuons (deposit draft 1998)
Policy OS5 - Enetgy The conservation and efficient use of energy in the sutang, landscaping, design, use of materials, layout and onentation of burldings will be encouraged through the provision of advise and in preapplication negotations
Policy OS6 - Proposals whech would result in poDuton of water, at or ground or polluton through noise, dust, vibtation, smell, heat, light or radianon will only be permitted of the health, safety and amenity of the usets of the land and nesghbounng land, and the quality and enpoyment of the environment are assured
Policy BE30 - Landfill will only be permutted where it is necessart, to bring about the restoramon and re use of land and where envitonmental consequences have been mromised in accordance with other Plan policies
Polncy GE6 - Control over development in the Green Belt Development whthen or conspicuous from the Green Belt should not harm the local landscape character of the visual amerrites of the Green Belt.

Proposed modrications (up to end of puble nquiry June 2000)
Polrcy EM1 - Conservatuon of Energy. Resources "The conservatorn and efficient use of energy will be promoted by the location of development and the sating and deasgy of buildings"
Polkty EM2 - Altemative Energy Resources The extent to whuch ulternative energy sources serve mportant communty interests will be recognised and taken into account when considenng proposals for such development

Ditcussions/cotrespondence with planning officera

\title{
STUDY OF RENEWABLE ENERGY PROSPECTS IN THE WEST MIDLANDS REVIEW OF EXISTING STRUCTURE PLANS, LOCAL PLANS AND UDPS
}

County/Barough_ Wolverhampton
```

Plan Status and Plannung Timetible
Current adopted plan 1993
Plan revew status Draft Strategy Statement published October 1999

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Developmenc Plan Poficies} \\
\hline \multicolumn{3}{|l|}{Renew able energy} \\
\hline & Y & N \\
\hline Exsting local plan policy relatigg to renewabie energy \({ }^{2}\) & & x \\
\hline Comment & & \\
\hline \multicolumn{3}{|l|}{Paterital constrants to the development of reneswable enecrgy resources} \\
\hline & Y & N \\
\hline Green Belt (Policy ENV1) & \(\checkmark\) & \\
\hline AONB & & x \\
\hline SLA/AGLV & & \(\mathbf{x}\) \\
\hline Other & & \\
\hline
\end{tabular}

Previous atudies of the renewable energy resiource
None

\section*{Exysting renewable energy pernetation \\ None}

Previout planmitu applications/appeals
None

\section*{Ptoposcd future plarrung policies}

\section*{Proposed Modificatıons:}

Revew Draft Strategy Statement (October 1999) outhes the man concerns of the revew process The document states that the mportance of the Green Belt can not be over stated \(\ln\) terms of sustanable development the documents suggeses that plannog should "promote and encourage energy efficiency" There is a need for waste mmumataon policies to encourage the use of recycled matenals in new development and promote energy efficiency

\section*{Discussions/correspondence with planning officers}

Discussions wth planimg officers suggest that the Local Plan will include policies relating to the design and onentator of dwellings in terms of energy effictency Polictes have not been drafted yet - the inclusion of a specufic renewable energy policy is therefore not cercain

\section*{Appendix D}

\section*{Sub Regional Assessments}

\section*{Appendix D Contents}
1 Staffordshure ..... D2
2 Shropshure ..... D7
3 Herefordshure and Worcestershre ..... D12
4 Watwicksture ..... D17
5 Metropolitan Areas ..... D22

1 Staffordshure





\section*{\(+\)}

2 Shtopshure

Doc Na Rov Find Dati Nownmar 2001
W भMEEIPRO,


\(=+\)

3 Herefordshure and Worcestersbure
\(+\)
Halcrow \(\quad\)\begin{tabular}{c} 
Deliverable Wind Resource \\
in Herefordshire and Worcestershire
\end{tabular}\(\quad\) Figure D9
D13



Figure D10

D14
D15
\(+\)



4 Warwitkshure
\(+\)
\(+\)

\(+\)


\section*{\(-+\)}

Dsc No Riv Final Doin Nowminor 2001
W WMEETPROJECTSIEEXE

\(+\)
Warwick
orcester

Urim Arem



\(z \rightarrow 1\)
यв 4 万मायग़


\section*{\(=+\)}


\section*{Appendix E}

\section*{Glossary of Terms and Nomenclature}

Nomenclature
\begin{tabular}{|c|c|}
\hline AC & Alternatug Current \\
\hline AD & Anaerobic Digestion \\
\hline AGLV & Areas of Great Landscape Value \\
\hline AMWS & Annual Mean Wind Speed \\
\hline AONB & Area of Outstanding Natural Beauty \\
\hline BWEA & Britush Wind Energy Assotation \\
\hline CCL & Clunate Change Levy \\
\hline CEGB & Central Electrictty Generating Boatd \\
\hline CHP & Combined Heat and Power \\
\hline DC & Direct Carrent \\
\hline DNC & Declared Net Capacity \\
\hline DNO & Distmbuton Network Operator \\
\hline DTI & Department of Trade and Industry \\
\hline DUaS & Distmbution Use of System Charge \\
\hline GATT & General Agreement on Tanffs and Trade \\
\hline GSP & Grid Supply Point \\
\hline GWh & Grga Watt Hour \\
\hline IRR & Intemal Rate of Return \\
\hline LEC & Levy Exempaon Ceraficate \\
\hline MAFF & Ministry of Agriculture, Fisheries and Food \\
\hline MW & Mega Watt \\
\hline NETA & New Electricity 'Tradung Arrangements \\
\hline NFFO & Non-Fossul Fuel Obligation \\
\hline NGC & Natronal Grid Company \\
\hline NNR & Natnonal Nature Reserves \\
\hline O8kM & Operation and Mantenance \\
\hline OFGEM & Office For Gas and Electricity Markets \\
\hline PPG & Plannung Policy Gudance note \\
\hline PV & Photovoltaic \\
\hline R\&D & Research and Development \\
\hline ROC & Renewables Obligaton Certicate \\
\hline RPG & Regonal Plannigg Gudance \\
\hline SAC & Special Areas of Conservation \\
\hline SLA & Special Landscape Areas \\
\hline SPA & Special Protection Areas \\
\hline SRC & Short Rotation Coppice \\
\hline SSSI & Sites of Special Scientific Interest \\
\hline UDP & Usutary Development Plan \\
\hline
\end{tabular}

\section*{GLOSSARY}
\begin{tabular}{|c|c|}
\hline Areas of Great Landscape Value & Areas defined in development plans that are protected in order to conserve locally important landscapes \\
\hline Areas of Outstandmeg Natonal Beauty & Areas defined in development plans that are protected in order to conserve nationally important landscapes \\
\hline Balancing Mecharusm & A mechanusm that corrects the difference between contracted and actual supply under the New Electricts Trading Arrangetments \\
\hline Biornass & Material that derives its energy content from the Photosynthetic growth of plants \\
\hline Buy Out Price & The price that a supply can pay in order to avoid supplying renewable generation under the proposed Renewable Obligation \\
\hline Clumate Change Levy & An addinonal charge to be placed on supplies of electroctry to business users \\
\hline Continued Growth Electraty Consumpaon Stenano & The electncity consumption in the region in 2010 takung into account hatorical trends and the best estimates avalable for natonal electuctry growth \\
\hline Conventonal Generation & Generation plant that is fuelled by coal, natural gas, oul, or nuclear fuels \\
\hline Development Plans & Plans drawn up by planning authontes to translate Government pollcy and guidance into planing permission decisions \\
\hline Distrabution Network & The network of whes and equpment that delyvers electncity from Gnd Supply Points to the final consumer \\
\hline Distrbution Network Operator & The company that owns and operates the electricty Distribution Network \\
\hline Embedded Gencraton & Generation plant that is connected to the Distribution Netwotk, as opposed to the Nanonal Gind \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Energy Crops & Plants that are growth specifically for energy recovery \\
\hline Energy Effictency Electricty Consumption Scenaro & The electricity consumption in the region following a vigorous energy efficiency programine that tesults in consumption returning to 1998 levels in 2010 \\
\hline E'TSU & Formerly the Government's Energy 'Technology Support Urut, ETSU are now a pravately owned company and are contracted to run DTT's renewable energy support programme \\
\hline Green Belt & Areas defined in development plans that are protected in order to protect open spaces between settlements \\
\hline Grid Supply Pount & The pont at which the National Gnd suppled electucity to the Distribution Networls \\
\hline Levy Exempton Certuficate & A certuficate that proves that genecation has been sourced from specified renewable technologes under the proposed Renewables Oblegation \\
\hline National Grid & The network of wres and eyupment that delivers electricity from major genetating plant to Grid Supply Points \\
\hline Net Meteang & A sutuation, relevant manly to PV technologes, where the price pard for electricitv generated is the same as the price of electucity bought \\
\hline New Electucty Tradıng Arrangements & New procedures for the trading of electricity on the wholesale market are schedules to begm operating in march 2001 \\
\hline Organte residues & B1omass residues from matenals orignally grown for another purpose \\
\hline Primary Energy Demand & The total energy used in the UK for all purposes \\
\hline RAMSAAR sites & Important wetlands sites defined in under the RAMSAAR convenaon \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Regonal Planning Gudance & Government planning policy is translated into development plans by the use of planning gudance Regional Planning Gudance for the West Mdlands (RPG 11) sets out pollcy objectives for the region \\
\hline Renewables Obligation & The Govemment is currently consulting on a proposal to oblige the supplers of electricty to source a propotton of the electricity they supply from renewable sources \\
\hline Renewables Obligation Certifate & A certuficate that proves that generation has been sourced from specified renewable technologhes under the proposed Renewables Obligatoon \\
\hline Spectal Landscape Areas & Areas defined in development plans that are protected in order to conserve locally umportant landscapes \\
\hline Use of System Charge & A charge made by the Distribution Networl Operator for a generator to send their electricty to a customer \\
\hline West Midlands Regon & The West Midlands Region covers the West Mddands conutbaton and the counties of Worcestershire, Shropshure, Staffordshire Warwnckshire and Herefordshare \\
\hline
\end{tabular}

\section*{Appendix F}

\section*{Reference and Bibliography}
\begin{tabular}{|c|c|}
\hline Refercace & Title \\
\hline DTI, 19992 & New and Renewable Energy Prospects for the 21st Century; Support Analysis, DTI, March 1999 \\
\hline DT1, 1999b & The Energy Report 1999, DTL 1999 \\
\hline DTI, 1999c & New and Renewable Energy Prospects for the 21st Century, DTI, March 1995 \\
\hline DTI, 1999d & Sustanable Energy from Waste, DTI, 1999 \\
\hline DTI, 2000a & New and Renewable Energy Prospects for the 21 st Century Conclusions in Response to the Publec Consultatoon, DTI, January 2000 \\
\hline DTI, 20006 & Digest of UK Energy Statistcs, DTI, 2000 \\
\hline DTI, 2000c & Energy Paper 68-Energy Propections for the UK, DTI, 2000 \\
\hline DT1, 2000 d & New and Renewable Energy Prospects for the 21 st Centary; The Rencwables Oblugation Prelmunary Consultation, DTI, October 2000 \\
\hline ETSU, 1989 & Small-scale Hvdroelectrac Generation Potental in the UK, ETSU, SSH4063 P1, 2, 3, 1989 \\
\hline ETSU, 1993 & Renewable Sources of Electrecty in the SWEB Area. Future Prospects, ETSU, 1993 \\
\hline ETSU, 1994a & Prospects for Renewable Energy withn the ManWeb regiom, ETSU/DTT/ManWeb, 1994 \\
\hline ETSU, 1994b & An Assessment of Renewable Energy for the UK, ETSU, 1994 \\
\hline ETSU, 1996a & A Communty Renewable Energy Plannung Study, ETSU, PR005, 1996 \\
\hline ETSU, 1996b & Small scale Hydro Schermes Notes for Developers, ETSU/National Assoclation of Water Power Users, 1996 \\
\hline ETSU, 1996c & A Revew of Landfill Gas Collection Methods and Efficiences, ETSU, B/LF/00472/REP, 1996 \\
\hline ETSU, 1996d & Landfill Gas Development Guidelines, ETSU, 1996 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Reference & Title \\
\hline ETSU, 1996e & The Potental Market for PV Panels in Office Buldngst, ETSU, S/P2/00256/08/REP, 1996 \\
\hline ETSU, 1997a & A Revew of the UK Onshore Wind Energy Resource, ETSU, R99, 1997 \\
\hline ETSU, 1997b & Revew of Physical Site Assessments for Landfill Gas Collection Projects, ETSU, 1997 \\
\hline ETSU, 19982 & Renewable Energs in Shropshire, ETSU, K/BD/00139/REP, 1998 \\
\hline ETSU, 1998b & The Vahue of Electrcity Generated from Photovolata Power Systerns in Buldings, ET'SU, S/P2/00279REP, 1998 \\
\hline ETSU, 1998c & A Technucal Gude for Connection of Embedded Generators to the Distribution Networls, ETSU, 1998 \\
\hline ETSU, 1999a & Electacity Network Limutations on Large scale Deployment of Wind Energy, ETSU, W/33/00529/REP, 1999 \\
\hline ETSU, 1999b & A Distmbution Netwotk Revrew, ETSU, K/EL/00188/REP, 1999 \\
\hline Env Agency, 1998 & Strategre Waste Management Survey West Mydlands, Environment Agency, 1998 \\
\hline Env Agency, 1999 & The Potental for Generatang Hydro-electncity from Weirs and Sluces, Envitonment Agency R\&D Technical Report W186, 1999 \\
\hline BWEA, 2000 & Plannugg for Wind Energy A Guide for Regional Targets, Britsh Wind Energy Associaton, 2000 \\
\hline MAFF, 1999 & Digest of Agricultural Statustics, MAFF, 1999 \\
\hline MAFF, 2000a & Miscanthus Agronomy for Fuel and Industral Uses, MAFF, 2000 \\
\hline MAFF, 2000b & England Rural Development Programme Energy Crops Scheme, MAFF, July 2000 \\
\hline MAFF, 2000c & Digest of Agricultural Statisacs, MAFF, 2000 \\
\hline IEA, 2000 & IEA PVPS Task 1 Report UK Trends, May 2000 \\
\hline BRECSU, 1994 & Regronal Distribution of the Building Stock in England and Wales by Bulk Class, BRECSU, 1994 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Reference & Title \\
\hline WMLGA, 1999 & West Midlands Environmental Montor, West Midlands Local Government Assocraton, 1999 \\
\hline Jenbacher, 2000 & Specification for Jenbacher Landfill Gas Engines, Personal Communication with Clarke Energs (UK Distributor), 2000 \\
\hline DETR, 1993 & Plannung Pollcy Gudance Note PPG22 Renewable Energy, DETR, Februaty 1993 \\
\hline DETR, 1994a & Regonal Plantung Gudance RPG11 Regional Planneng Gudance for the West Midlands, DETR, 1994 \\
\hline DETR, 1994b & Plannung Pollcy Gudance Note PPG22a, Annexes to Renewable Energy, DETR, October 1994 \\
\hline DETR, 1994c & Planning Policy Gudance Note PPG9 Nature Conservaton, DETR, October 1994 \\
\hline DETR, 1994d & Planning Policy Gudance Note PPG15 Planning and the Hostonc Environment, DETR, September 1994 \\
\hline DET'R, 1094e & Plannung Policy Guidance Note PPG16 Archaeology and Plannung, DETR, September 1994 \\
\hline DETR, 1995 & Plannug Polcy Gudance Note PPPG 2 Green Belts, DETR, January 1995 \\
\hline DETR, 1997 & Planning Policy Gurdance Note PFG7 The Countryside Environment Quality and Econome and Social Development, DETR, February 1997 \\
\hline DETR, 2000) & Strategic Plannung for Renewable Energy Profects will Promote Delivery of Sustanable Development - Press Release, 6 March 2000 \\
\hline DETR, 2000b & A Better Qualuty of Lafe, DETR, February 2000 \\
\hline DETR, 2000 c & Limiting Landfill - Consultation Paper on the Implementation of the Landill Drectuve, DETR, 2000 \\
\hline DETR, 2000d & Waste Strategy for England and Wales, DETR, May 2000 \\
\hline Forest of Mercia, 1999 & A Wood Energy Local Plan for the Forest of Mercia, Fotest of Mercia Parntrshyp, December 1999 \\
\hline
\end{tabular}

\section*{Reference}

DoE, 1992 The UK Enviroment, Deparment of the Environment, 1992
ONS, 1999 Regional Trends 34, Office of National Statistics, 1999
ONS, 2000 Office of Natonal Statstucs Communation, 2000

EA, 1978 Engmeering Recommendation P2/5 Security of Supply, Electincty Assocration, 1978

EA, 1991

EA, 1992

EA, 20010

EA, 2000b

I Sunclarr, 2000

K Caddick, 2000

NGC, 2000

GPU, 2000

D Millborrow, 2000

EC, 2000 Proposal for a Ditectuve of the European Parlament and of the Councll on the Promotion of Electritity from Renewable Energy Sources in the Internal Electncty Market, Commission of the European Commuraties, 2000
Update from the Electricity Association Workurg Group on Embedded Genetation \({ }^{\top}\), I Sinclatr, Paper Presented at the Confetence 'Generating and Supplying Renewable Energy', London, 14-15 June 2000

Back to the Future', K Caddıck, DT1, New Review Magazine, August 2000

Natonal Grid Company's Seven Year Statement
GPU Power UK. Qualty of Service Report 19992000

Renewable Energ Prices', D Mullborrow, Paper Presented at the Conference 'Generating and Supply Renewable Enetg', London, 14-15 June 2000

\section*{Reference}

Title

Buash Biogen, 2000 (Draft) Response to the Renewables Obligation Preliminary Consultation, Bntash Brogen, 2000

Forestry Commussion, Short Rotaton Coppice and Woad Fuel Symposium from Research to 2000

Canntngton College, 1998

Somerset Brogas Study, Cannungton College, 1998

Progress in
Photovoltacs, 2000

Solar Cell Efficiency Tables (Version 15), Progress in Photovoltaics
Rescarch and Applicatoons, 8, 187195 (2000)```


[^0]:    Halcrow Group Ltd
    Burderop Park Swindon Willshire SN4 OQD
    Twl 444 (0)1793 812479 Fax +44 ( 0 ) 1793 ; 12009
    whw halcrow com

    Halcrow Group Lid has prepared this report in accordanca with the insifuctions of their cleent, Gowemment Office for the West
    Midands for their sole and specific use Any other persons who use any information contaned herenn do so at their own nsk

[^1]:    ${ }^{1}$ At the meter electraty consumption is recorded, normally, in unts of kWh Sunce thus study is considenng electicity consumption on a tegorial level a larger unit must be used. 1 GWh equals $1,000,000 \mathrm{kWh}$
    ${ }^{2}$ Electucal power is measured in Watts 1 MWi cquals $1,000,000$ W For companson the 'average' light bulb is rated at 60 W

[^2]:    ${ }^{3}$ As of the 30 June 2000, 757 MW (DNC) of capacity had been commussioned un England and Wales as a result of the Non Fossill Fuel Oblegatoon. Ths compares with a contracted capacity of 3271 MW (Note that the Govemment had set a target to acheve 1500 MW of renewable electncty generatng capacety, through the NFFO mechanusm, by 2000)

[^3]:    4 However, Government has undicated that it will intervene where it feels that the market alone may fall to deliver Hence, capital grants from DTl are being perrnitted for offshore wand and enengy crops and some energy crops will qualify for additonat subssdy from DEFRA.

[^4]:    ${ }^{5}$ These were prevously referred to as 'green ceraficates' The tem $\mathbf{R O C}$ was untroduced to avond any passible confuston with certicates used for CCL exempaon, carbon trading and intemanonal green cernficate trading

[^5]:    6Ths is already some evidence for this NFFO I and 2 concacts were set on the basis that the dexeloper had to pay off all capital rosts before 1998, rather than spread over the lifetume of the project Thus party explans why NFFO 1 and 2 pnces wete much hugher than NFFO 3 when thus requrement was removed

[^6]:    ${ }^{7}$ Note that energy tield does not un fact increase whth the cube of wind speed sunce power conversion efficiences vary wuth wind speed and, as the means wind speed macrease, a greater proportion of the energy is "spilled' as the control syesem lemuts the output to its rated level Tvpreally a ste with an average wind speed of $8 \mathrm{~m} / \mathrm{s}$ could be expected to produce $80 \%$ more electncity than the same turbane at a site of $6 \mathrm{~m} / \mathrm{s}$

[^7]:    * At preseat, electricity exported to the network from a PV systern is sold at, or close, to the 'pool' price ( $\sim 2$ $\mathrm{p} / \mathrm{W}$ Wh ) despute the fact that the electrraty is likely to be used locally and thus should not incur, it can be argued,

[^8]:    ${ }^{9}$ Rapid changes in the electriciry supply industry in the past few years have produced in number of mergers and acquasitoos The parent compantes for GPU Power, Manweb and East Midands electrcrty are, respectively" GPU lnc, Scotush Power and PowerGen UK

[^9]:    ${ }^{10}$ The distribution system comprises overhead lines, cables, trantformers, swatchgear and other equpment to enable the transfer of electricty from the transmission system and qenerators connected to the distribution network to customers' premises

[^10]:    ${ }^{13}$ Accordmg to reference [ETSU, 1999a] the cost of installing a $45 \mathrm{MVA} 132 / 33 \mathrm{kV}$ substanoon is expected to be m the order of f. 1 mullion
    ${ }^{12}$ Inverter connected generaton does sull contabute towards fault levels but whth no short arcuit contrabution the fault level is reduced to $\sim 15 \%$

[^11]:    13 A sernes of three workshops entuled 'Embedded Generation - Realising the potental for network benefits' were held between February and March 2000 and addressed these issues in depth

[^12]:    ${ }^{14}$ For the GPU Power network there are 48,600 distribution substations and $26,101 \mathrm{~km}$ of medium voltage ( 11 kV , kV and 66 kV ) lines

[^13]:    Symbol - Negliglbie tlees lhet halt of tha find digit shown)
    

[^14]:    ${ }^{13}$ The NOABL data set was produced by ETSU in 1992 annual mean wind speeds were calculated for the UK at a resolutron of $1 \mathrm{~km}^{2}$ using computer modelling technigues which include topographial effects and normalesed to long-term data obtamed for 51 meteorological statons

[^15]:    ${ }^{16}$ Note that energy yeld does not in fact increase with the cube of wind speed surce power converston efficiencies vary with wind speed and, as the mean wind speed increase, a greater proportion of the energy is 'spiled' as the control System limits the output to its tated level. Typseallv a site wath an awms of $B \mathrm{~m} / \mathrm{s}$ could be expected to produce $80 \%$ more electuctity than the same turbine at a site of $6 \mathrm{~m} / \mathrm{s}$.

[^16]:    ${ }^{17}$ Whalst SLA's and AGLV's are not statutory designations and thert precise defintion waties across the regron, they do represent areas where high local interest in the landscape is bikely to lead to resstance to wind developments

[^17]:    ${ }^{18}$ The installed capacty of a solar photovoltac systen is usually measured in $k$ Wp peals This is the power produted under standard test conditons of $1000 \mathrm{~W} / \mathrm{m}^{2}$ itraduance, $25^{\circ} \mathrm{C}$ function temperature and solar reference spectrum AM1 5

[^18]:    ${ }^{20}$ "AC Modules' contan a small inverter on the back of the module This elumotes the requirement for DC wingg (hence the name) and offers a much simpler installation - witho the realms of a compelent DrY installer However, under the current regulatons (Engmeermg Recommendatuon G77) [EA, 20006] AC Modules are not approved for connection to the electncity network

[^19]:    22 'Small' hydro power is Lustally broken down futther into 'mini' hydro (for capactaes generally below I MW) and 'microx hydro (for capactues genetally below 100 kW ). Although the boundary between mero, min and small is not clearly defined many of the sutes surveyed here would be classed as 'micro'

[^20]:    Proposed futute platoune poilcics
    Proposed Modificationa
    Deposit draft contans a pollcy on renewnble energy Pollcy $\$ \mathrm{O} 2$ states that the development of renewable energy sources such as wind or solar power will be welcomed Proposals for such facilnes will be considered io terms of impact on the natural and bult enarronment and affect on the amenty of residental propertes

    Discuasions/correspondence with planning aflicers:

