

Flood Risk Assessment and Drainage Strategy

Prepared for **David Wilson Homes Mercia**

Proposed Development at **Hither Green Lane, Redditch, B98 9BN**

Travis Baker Ltd Trinity Point New Road Halesowen West Midlands B63 3HY **Tel**: 0121 550 8037 **Fax**: 0121 550 8047

info@travisbaker.co.uk www.travisbaker.co.uk

Document Control

Project Title: Hither Green Lane, Redditch, B98 9BN

Document Type: Flood Risk Assessment and Drainage Strategy

Project Number: 21169

Revision	Date	Comments	Prepared by	Checked by
-	12.07.21	First Issue	Mathew Grainger	Dave Baker
А	20.09.21	Redline Boundary update and Severn Trent Foul Capacity Response added.	Liam Hyland	Mathew Grainger
В	22.03.22	LLFA comments addressed	Dave Baker	Mathew Grainger
С	30.11.22	Additional LLFA comments addressed	Dave Baker	Rob Travis
D	20.02.22	Latest Site Layout incorporated	Mathew Grainger	Dave Baker
Е	18.04.2023	Latest Site Layout incorporated	Mathew Grainger	Dave Baker

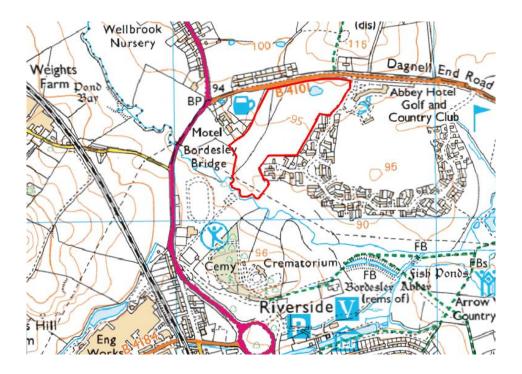
This document has been prepared by Travis Baker Limited for the exclusive use by the commissioning party in accordance with the terms and conditions of the contract between Travis Baker Limited and the commissioning party. No other party may use, make use or rely on the contents of this report without the prior written consent of Travis Baker Limited. No liability is accepted by Travis Baker Limited for any use of this report other for the purpose for which it was originally prepared. This document may contain and rely on information provided by Third Parties; no verification of such information has been undertaken and Travis Baker Limited accept no responsibility for any inaccuracies within such information. No part of this report may be copied or reproduced by any means without written permission from Travis Baker Limited.

The consultant's liability to the client arising out of or in connection with this document whether under the law of contract in tort (including negligence), in equity, or under statute or otherwise shall be limited to the fee paid for the preparation of this document. The consultant shall not be liable to the client in respect of any consequential or indirect loss or damage. The consultant shall be deemed to have been discharged from all liability in respect of this document whether under contract, in tort (including negligence), under statute or otherwise, on the expiration of 1 year from the completion of this document.

Contents

1.0	INTRODUCTION	1
1.1	Background to Report	1
1.2	Site Location and Surroundings	1
1.3	Brief Development Proposals	2
2.0	EXISTING TOPOGRAPHY AND LAND USE	3
2.2	Existing Drainage Provision and Run-Off	3
2.3	Existing Fluvial Flood Risk	3
2.4	Flood Risk from Other Sources	4
3.0	THE DEVELOPMENT PROPOSALS	5
3.1	Proposed Sustainable Drainage Systems	5
3.2	Proposed finished floor levels and flood protection	6
3.3	Foul Water Drainage	6
4.0	CONCLUSIONS	8
4.1	Flood Risk, Flood Consequences and Development Location	8
5.0	APPENDICES	9

1.0 INTRODUCTION


1.1 Background to Report

- 1.1.1 Travis Baker were commissioned to prepare a flood risk assessment and accompanying drainage strategy in accordance with the requirements of the NPPF and local planning policy to support the planning application for a proposed 215 dwelling residential development off Hither Green Lane. The site is located at postcode B98 9BN.
- **1.1.2** Following the submission of the planning application the LLFA (NWWM) advised that they are broadly supportive of the principle of development but maintained a Holding Objection with the requirement for the submission of additional information. A copy of their response is in the appendices. This report was revised to include additional information to address the concerns raised which summarise as follows:
 - Preserve existing drainage features and incorporate them into the layout and site landscaping
 - Provide attenuation to separate sub catchments of the site rather than single large feature.
 - Provide source control measures for the site.
 - Undertake a Simple Index Assessment for site runoff water quality.
- **1.1.3** Further liaison has been undertaken with the LLFA and they have now confirmed that the drainage proposals are acceptable. A copy of their email response is in the appendices. The drainage strategy drawings have also been amended to reflect the latest round of comments.

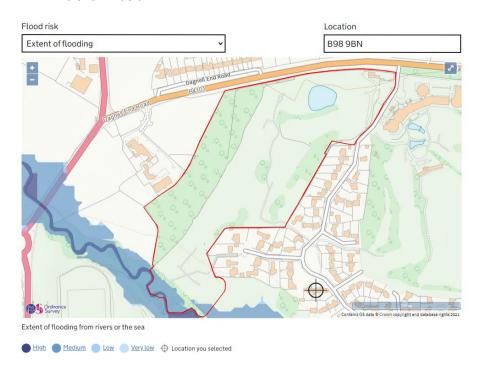
1.2 Site Location and Surroundings

- **1.2.1** The centre of the site lies at grid reference SP044693 (404400, 269350).
- **1.2.2** The area of land to be developed is currently part of The Abbey Hotel Golf and Country Club. East of the site is Hither Green Lane and existing residential housing. The development is accessed off Hither Green Lane. North of the site is Dagnell End Road. West of the site is Meadow Farm Redditch, Marston's Inn and south of the site is the River Arrow.
- **1.2.3** The site falls completely within the administrative boundary of Worcestershire County Council.
- **1.2.4** The location of the site is shown below:

1.3 Brief Development Proposals

- **1.3.1** The proposed development will consist of 215 dwellings, access to the development is off Hither Green Lane.
- **1.3.2** The highway layout will be set to best follow the existing topography.
- **1.3.3** The development proposals are shown in the appendices.

2.0 EXISTING TOPOGRAPHY AND LAND USE


- **2.1.1** A topographical survey has been undertaken by Geoff Perry Associates, a copy of which is in the appendices.
- **2.1.2** The land is currently part of The Abbey Hotel Golf and Country Club. The land slopes generally from north to south with levels ranging from 101.50m AOD to 90.00m.
- **2.1.3** There is a large existing pond located in the north of the development, this is to be retained and slightly resized and not be used for any proposed flow attenuation.
- **2.1.4** There are smaller pools within the site and an existing car park to the northeast. The smaller pools are entirely man made and were constructed as features of the golf course, not as drainage features of the land itself.

2.2 Existing Drainage Provision and Run-Off

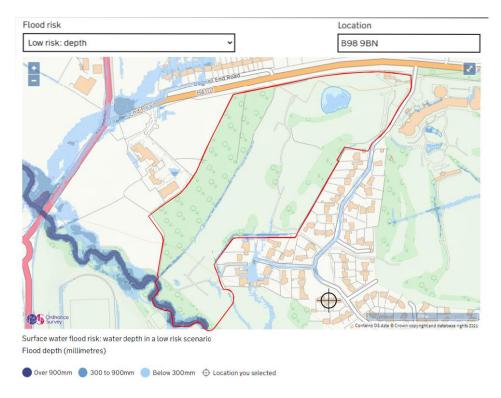
- **2.2.1** With reference to the topographical survey and Severn Trent Water sewer records there is an existing combined sewer to the very south of the site, running next to the river arrow.
- **2.2.2** The land falls north to south and it would appear that drainage of surface water is by overland flow and also some very shallow cut off ditches to the River Arrow.

2.3 Existing Fluvial Flood Risk

2.3.1 The information available from the GOV.UK website indicates that the majority of the site is within flood zone 1. However, a small proportion of the site to the south is located within Flood Zone 3 (1.0% or greater probability of flooding annually) and flood zone 2 (0.1% or greater probability of flooding annually). The flood mapping is shown below.

Travis Baker Limited Project Number 21169

- **2.3.2** In order to confirm more accurately the potential for flooding to the site, a request was made to the environment Agency for flood level data in the vicinity of the site. A copy of their response Product 4 (Detailed Flood Risk Data) for flood data for the development adjacent to the River Arrow, Redditch. Ref 212168. Date 24th June 2021 is in the appendices.
- **2.3.3** The level data provided has been integrated and interpolated. The flood levels nearest to the site are;


```
1\% (Climate Change) = 89.000m - 88.600m
```

$$0.5\% = 89.100m - 88.700m$$

- **2.3.4** These levels have been transposed onto the drainage strategy drawing and as can be seen pose no threat and do not encroach into the area proposed for development.
- **2.3.5** A sequential test is therefore not required.

2.4 Flood Risk from Other Sources

2.4.1 The GOV.UK mapping showing the risk of surface water flooding to the site is below:

2.4.2 The areas of the site which are potentially susceptible to surface water flooding relate to the low points and small ditches within the existing site, along with the existing pond and pools. Upon redevelopment the small ditches and pools will become redundant.

3.0 THE DEVELOPMENT PROPOSALS

3.1 Proposed Sustainable Drainage Systems

3.1.1 As with any development, the first method of surface water disposal which should be investigated is by infiltration to the ground. A geo-environmental assessment has been prepared by Georisk Management Ltd. Report-no: 16101/1 states and the following;

Infiltration testing has been carried out in selected trial pits. The test results show that no significant infiltration was recorded over a timed period of approximately 4 hours and; therefore, it is considered that surface water from the development could not be effectively discharged by soakaway drainage and an alternative drainage solution will need to be sought.

- **3.1.2** It is therefore proposed that the disposal of surface water from the site is by positive means.
- **3.1.3** As described previously the existing larger pond to the north of the site will be retained. Contact has been made with the current operator of the golf course and it has been confirmed that there are no current positive surface water outfalls into or out of the pond and the water level has remained fairly constant for at least the last 10 years. It is therefore considered that the water level should not drop post development.
- **3.1.4** The smaller ponds located within this area of the current golf club were installed as features and hazards of the fairway / greens. They do not form part of the natural drainage sub-catchments of the area.
- **3.1.5** A preliminary (and subject to further detailed design) drainage strategy has been prepared by Travis Baker and is shown on drawing numbers 21169-1, 2 and 3 Preliminary Drainage Strategy and Finished Floor Levels.
- **3.1.6** The HR Wallingford IH124 methodology has been used to calculate the existing predevelopment greenfield run-off rate for the development area. With reference to the results in the appendices, the current rate of run-off is 4.92 litres per second per hectare.
- **3.1.7** A total impermeable area of 4 hectares means flow attenuation will be required to limit flows to 19.6 litres per second.
- **3.1.8** It is proposed that the required storage will be in the form of an attenuation basin with a vortex flow control providing the flow restriction.
- **3.1.9** Drainage design has been developed using the Causeway FLOW hydraulic modelling software. The required volume for the attenuation basin has been calculated as 2986 cubic metres with the restricted discharge rate of 19.6 litres per second. This attenuation volume accounts for the critical 100 year + 40% rainfall events.
- **3.1.10** The input details and simulation results are in the appendices. These will be developed further at detailed design stage into a fully detailed model. However, at this stage, the calculations provide a robust assessment of the storage required and the ability for this to be incorporated into the development.

- **3.1.11** The attenuation basin has been designed with a varying (up to 1.2m) permanent water level along with 2m wide grass terraces to maximise biodiversity. The side slope gradients are 1:3 where grass terraces are located and 1:5 in the other areas.
- **3.1.12** As the attenuation area will be above ground and the permanent standing water will provide ecological and amenity benefits. This will not affect the hydraulic performance of the feature. The basin will also include a sediment forebay located at the inflow headwall, which will provide initial treatment and sediment collection.
- **3.1.13** The landscaping proposals will also be designed to introduce various ecological habitats which will be attractive to animals, insects and birds etc. They will form an intrinsic part of the overall landscaping and provide areas of interest to the residents.
- **3.1.14** A number of smaller shallow basins and a conveyance swale will be incorporated into the development. These will provide an additional level of water quality treatment.
- **3.1.15** In addition to the basin some areas of hardstanding will be drained via the installation of lined permeable paving, which are shown on the drainage strategy drawing. These will also provide an additional level of water quality treatment.
- **3.1.16** In order to assess the performance of the sustainable drainage features a Simple Index Assessment (CIRIA SuDS Manual) has been undertaken using the HR Wallingford tool. Three separate assessments have been undertaken covering Rooves, Parking and Roads. The results in the appendices show that the proposed SuDS features provide adequate surface water quality management.
- **3.1.17** It is proposed that upon completion of the development the piped drainage systems upstream of the balancing pond, together with the downstream flow controls will be offered to Severn Trent Water for adoption into the public sewer network via the Section 104 adoption mechanism.
- **3.1.18** The long-term successful operation of the attenuation basin, the smaller basins and the conveyance swale will be assured as they will be maintained by a bespoke management company under the requirements of the Flood and Water Management Act. A proposed SUDS management Strategy is in the Appendices.
- **3.1.19** The ultimate fully detailed design of the systems will be subject to the vetting and approval of these bodies and also the LLFA who will be consulted when applications are made for the discharge of relevant drainage related planning conditions.

3.2 Proposed finished floor levels and flood protection

- **3.2.1** There are very small areas of the site which are potentially affected by surface water flooding but as described previously these will become redundant and not affect the development. The 215 dwellings lie wholly within flood zone 1.
- **3.2.2** Therefore, there is no requirement for proposed finished floor levels to be artificially raised above surrounding ground levels.

3.3 Foul Water Drainage

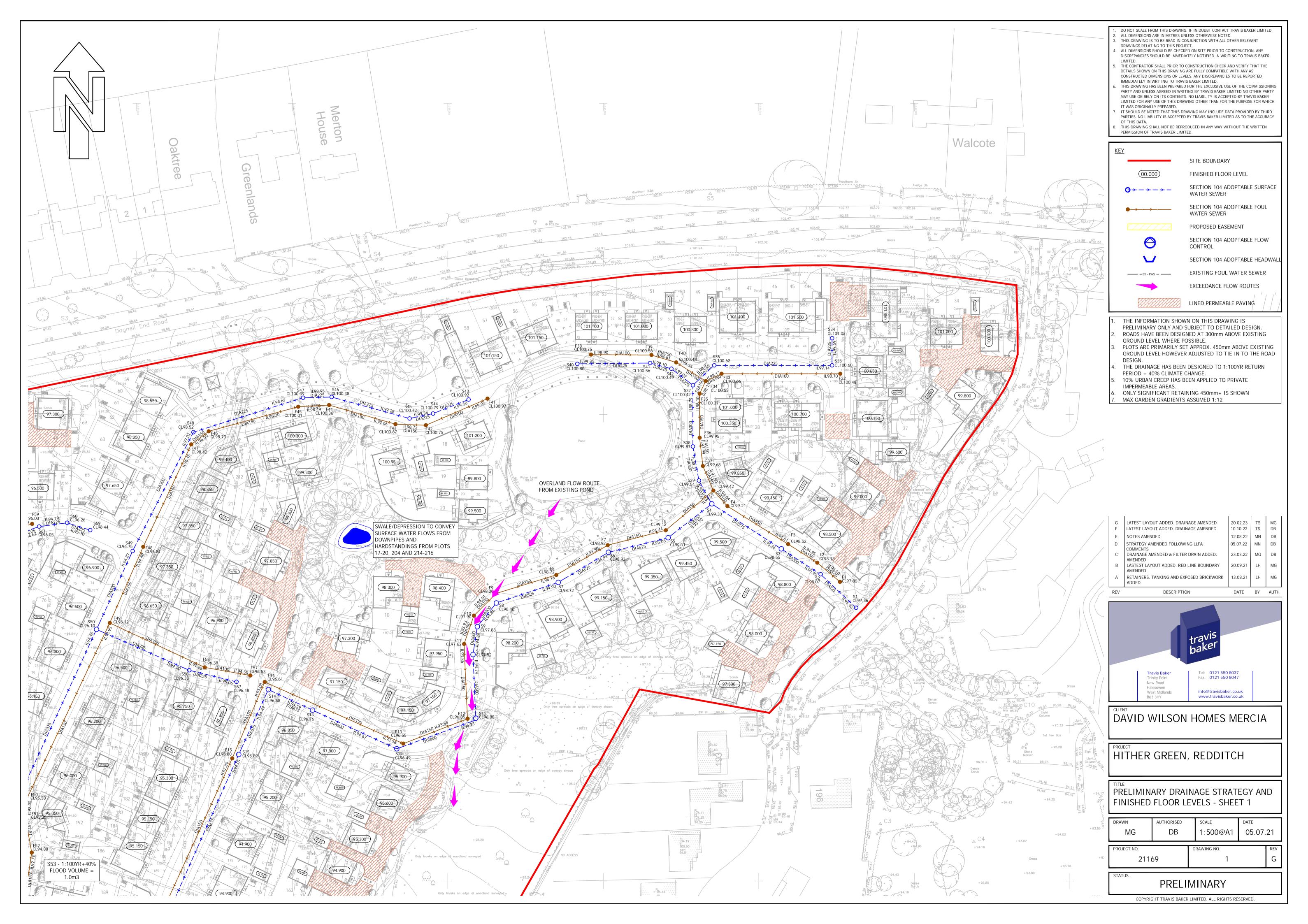
3.3.1 Foul water generated by the proposals will be directed to the existing combined 375mm public sewer. A new manhole will be constructed between the existing

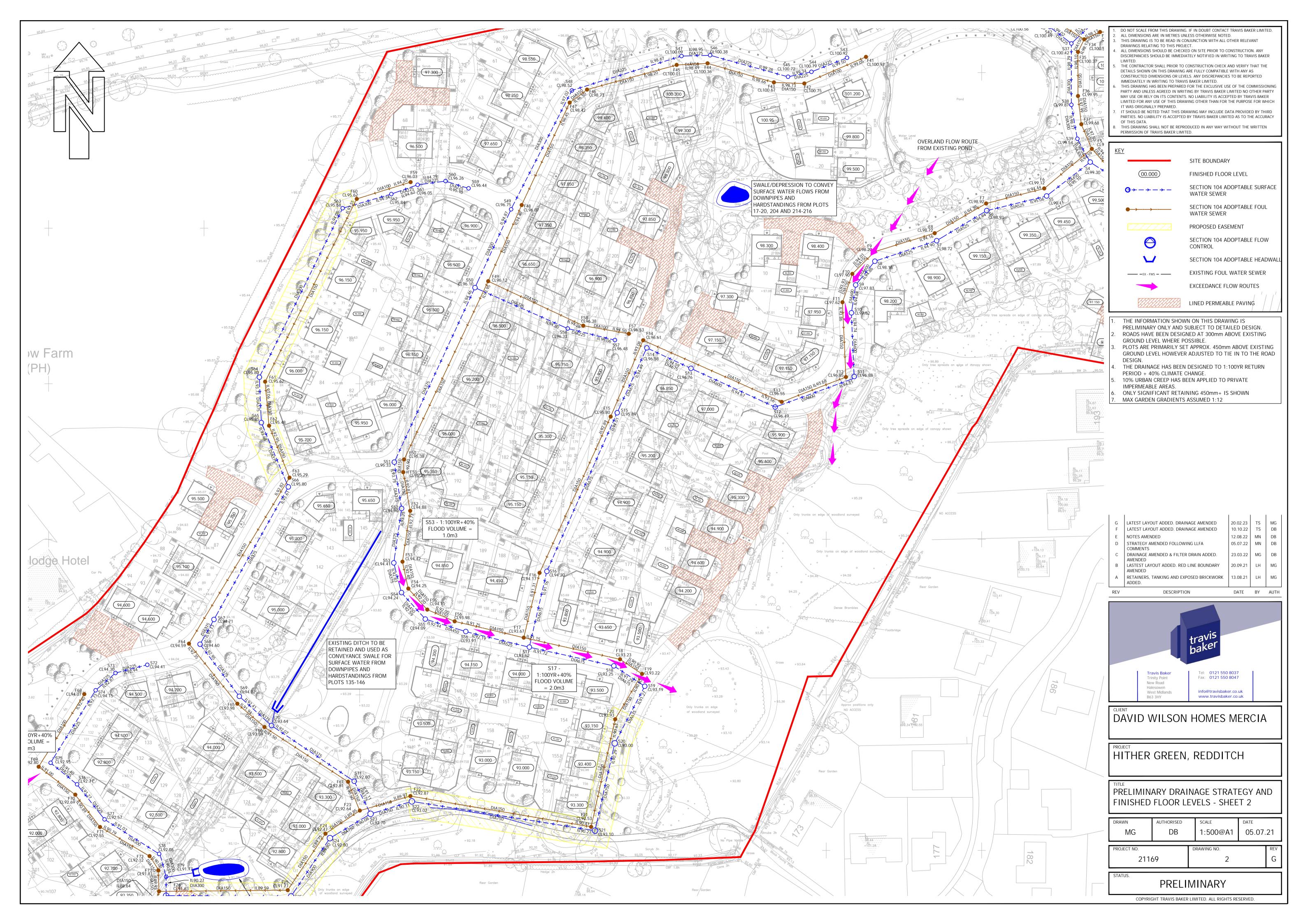
- Severn Trent Water manholes 2101 and 3001 to provide the outfall to the development.
- **3.3.2** Severn Trent Water have been approached for confirmation of available foul water capacity in the public foul water sewer network. A copy of their response is in the appendices.
- **3.3.3** Severn Trent Water were contacted with regard to the increase in plot count. A sewer capacity assessment was requested to understand if there will be an impact on the existing network. The assessment will not have an impact on the development. A copy of their response is in the appendices.

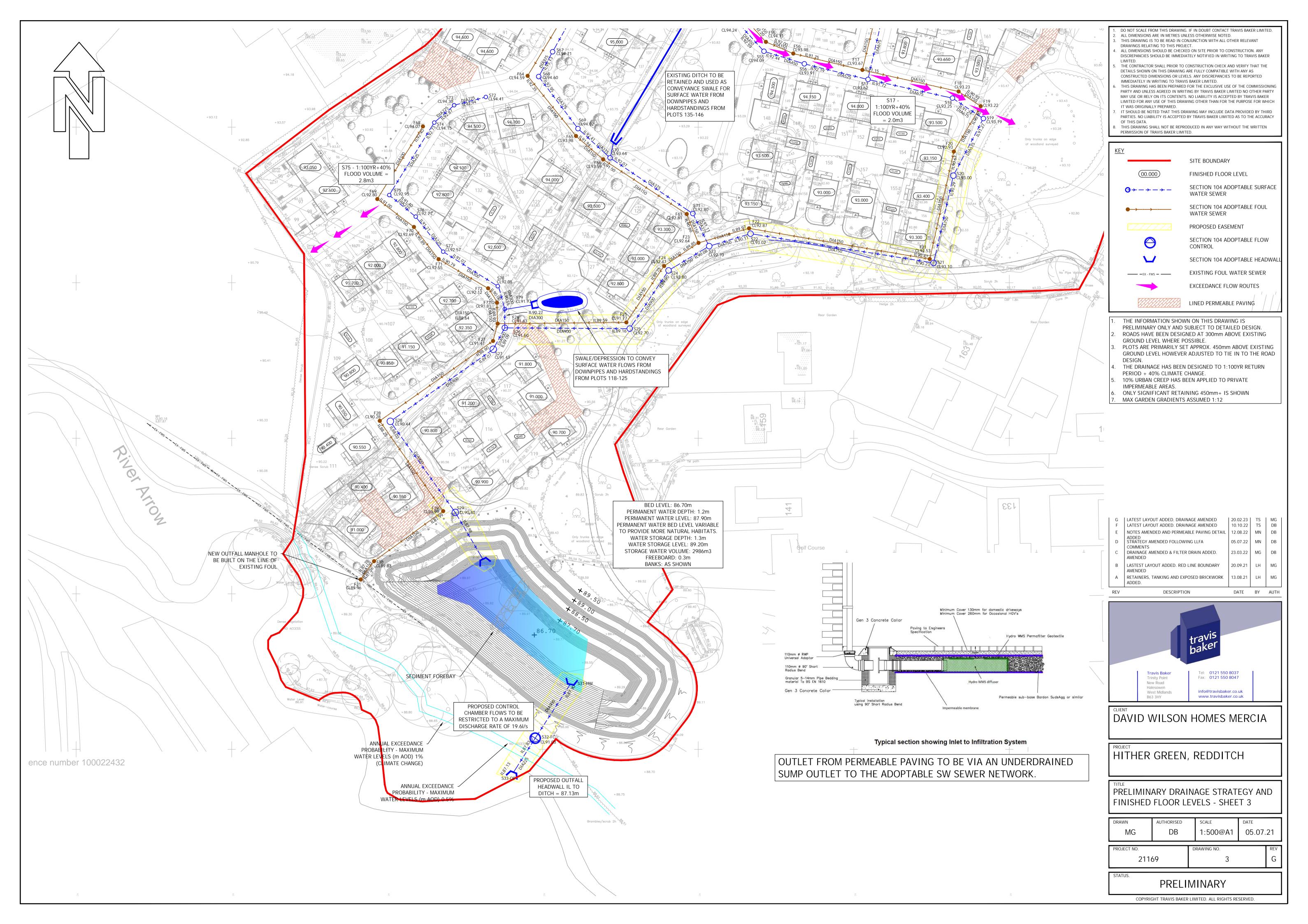
4.0 CONCLUSIONS

4.1 Flood Risk, Flood Consequences and Development Location

- **4.1.1** The proposed developable area of the site lies totally within Flood Zone 1 and are not at significant risk of flooding from surface water or other sources.
- **4.1.2** Provision for the satisfactory disposal of surface and foul water are provided for, and suitable sustainable drainage features will be included in the site proposals.
- **4.1.3** The piped drainage systems will be submitted for technical approval by STW such that a Section 104 Agreement is in place. The sewerage will ultimately be adopted into the public sewer network.
- **4.1.4** The surface water attenuation basin and downstream control structure will also be suitably and regularly maintained. This will ensure that the proposals will continue to operate as intended throughout the life of the development.
- **4.1.5** It is considered that the proposed scheme is in accordance with relevant planning policy and that approval to this application should not be withheld on flooding grounds.




5.0 APPENDICES


- Appendix 1 Travis Baker Drawing 21169 1, 2 and 3 Preliminary Drainage Strategy and Finished Floor Levels
- Appendix 2 Topographical Survey
- Appendix 3 Environment Agency Product 4 Detailed Flood Risk Data
- Appendix 4 HR Wallingford Greenfield Runoff Rate Calculation
- Appendix 5 21169 Hither Green SW Input and Results
- Appendix 6 SUDS Maintenance Strategy
- Appendix 7 Severn Trent Water Development Enquiry Response and Sewer Records
- Appendix 8 Seven Trent Water Existing Sewer Capacity Check
- Appendix 9 Simple Index Assessments for SuDS features
- Appendix 10 NWWM (LLFA) response

Appendix 1 – Travis Baker Drawing 21169 – 1, 2 and 3 Preliminary Drainage Strategy and Finished Floor Levels



Appendix 2 – Topographical Survey

Appendix 3 – Environment Agency Product 4 Detailed Flood Risk Data

Product 4 (Detailed Flood Risk Data) for Flood data for development adjacent to River Arrow, Redditch

Reference number: 212168 Date of issue: 24 June 2021

Model Information

The following information and attached maps contain a summary of the modelled information relevant to the area of interest. The information provided is based on the best available data as of the date of issue.

Model Name	Release Date
River Arrow	2009

The Environment Agency Fluvial Modelling Standards recent publication "Delivering Benefits Through Evidence" can be found in the attached sharefile link https://ea.sharefile.com/d-s8ab48c627aaa4f01b5bd81bc05a8fbde

Flood Map for Planning (Rivers and Sea)

The Flood Map for Planning (Rivers and Sea) indicates the area at risk of flooding, assuming no flood defences exist, for a flood event with a 0.5% chance of occurring in any year for flooding from the sea, or a 1% chance of occurring in any year for fluvial (river) flooding (Flood Zone 3). It also shows the extent of the Extreme Flood Outlines (Flood Zone 2) which represents the extent of a flood event with a 0.1% chance of occurring in any year, or the highest recorded historic extent if greater. The Flood Zones refer to the land at risk of flooding and do not refer to individual properties. It is possible for properties to be built at a level above the floodplain but still fall within the risk area.

This Flood Map only indicates the extent and likelihood of flooding from rivers or the sea. It should also be remembered that flooding may occur from other sources such as surface water, sewers, road drainage, etc.

To find out which flood zone a location is in please use: https://flood-map-for-planning.service.gov.uk/

Definition of flood zones

• **Zone 1** - The area is within the lowest probability of flooding from rivers and the sea, where the chance of flooding in any one year is less than 0.1% (i.e. a 1000 to 1 chance).

- Zone 2 The area which falls between the extent of a flood with an annual probability of 0.1% (i.e. a 1000 to 1 chance) fluvial and tidal, or greatest recorded historic flood, whichever is greater, and the extent of a flood with an annual probability of 1% (i.e. a 100 to 1 chance) fluvial / 0.5% (i.e. a 200 to 1 chance) tidal. (Land shown in light blue on the Flood Map).
- **Zone 3** The chance of flooding in any one year is greater than or equal to 1% (i.e. a 100 to 1 chance) for river flooding and greater than or equal to 0.5% (i.e. a 200 to 1 chance) for coastal and tidal flooding.

Note: The Flood Zones shown on the Environment Agency's Flood Map for Planning (Rivers and Sea) do not take account of the possible impacts of climate change and consequent changes in the future probability of flooding. Reference should therefore also be made to the Strategic Flood Risk Assessment when considering location and potential future flood risks to developments and land uses.

Node Data

The attached map shows a selection of 1D model node points near to your site. The fluvial levels for these node points are shown below.

Fluvial Flood Levels (m AOD)

The modelled levels are given in m AOD (N), m AOD indicates metres Above Ordnance Datum (Newlyn).

The information is taken from the model referenced above and does not include the updated climate change figures.

							Annual Exceedan	oe Probability -Maximu	um Water Levels (mA	OD) Defended		
Node Label	MODEL	EASTING	NORTHING	20% (1 In 6)	10% (1 in 10)	6% (1 In 20)	2% (1 in 60)	1.33% (1 In 75)	1% (1 In 100)	1% (Climate Change)	0.6% (1 in 200)	0.1% (1 In 1000)
RAR27249	Arrow & Aine SFRM 2009	404641	268905	86.17	86.34	86.5	86.71	86.81	86.88	86.94	86.98	87.26
RAR28245	Arrow & Aine SFRM 2009	404006	269290	88.99	89.21	89.5	89.98	90.28	90.57	90.86	91	91.79
RAR28245D	Arrow & Aine SFRM 2009	404021	269278	88.91	89.11	89.33	89.65	89.8	89.93	90.14	90.28	90.92

				AEP-Max. Water lev Undefended	vels m(AOD)
Node Label	MODEL	EASTING	NORTHING	1% (1 in 100)	0.1% (1 In 1000)
RAR27249	Arrow & Aine SFRM 2009	404641	268905	86.88	87.26
RAR28245	Arrow & Aine SFRM 2009	404006	269290	90.57	91.79
RAR28245D	Arrow & Aine SFRM 2009	404021	269278	89.93	90.92

Climate Change

In February 2016 the 'Flood Risk Assessments: Climate Change Allowances' were published on GOV.UK. This is in replacement of previous climate change allowances for planning applications. The data provided in this product does not include the new allowances. You will need to consider this data and factor in the new allowances to demonstrate the development will be safe from flooding. The fluvial climate change factors are now more complex and a single uplift percentage across England cannot be justified.

The Environment Agency will incorporate the new allowances into future modelling studies. For now, it remains the applicant's responsibility to demonstrate through their proposal and flood risk assessments that new developments will be safe in flood risk terms for its lifetime.

Recorded Flood Outlines

Following examination of our records of historical flooding we have no record of flooding in the area. The absence of coverage for an area does not mean that the area has never flooded, only that we do not currently have records of flooding in this area. It is also possible that the pattern of flooding in this area has changed and that this area would now flood or not flood under different circumstances.

You may also wish to contact your Local Authority or Internal Drainage Board, to see if they have other relevant local flood information.

Flood Defences

There are no formal flood defences owned or operated by the Environment Agency protecting this site. You may wish to contact the Local Authority to obtain further information regarding localised flooding from drains, culverts and small watercourses, and regarding existing or planned flood defence measures.

Planning development/s

If you have requested this information to help inform a development proposal, then you should note the information on GOV.UK on the use of Environment Agency Information for Flood Risk Assessments. You can also request pre application advice:

https://www.gov.uk/planning-applications-assessing-flood-risk https://www.gov.uk/government/publications/pre-planning-application-enquiry-form-preliminary-opinion

Supporting Information

Surface Water

Managing the risk of flooding from surface water is the responsibility of Lead Local Flood Authorities. The 'risk of flooding from surface water' map has been produced by the Environment Agency on behalf of government, using information and input from Lead Local Flood Authorities.

You may wish to contact your Local Authority who may be able to provide further detailed information on surface water.

It is not possible to say for certain what the flood risk is but we use the best information available to provide an indication so that people can make informed choices about living with or managing the risks. The information we supply does not provide an indicator of flood risk at an individual site level. Further information can be found on the Agency's website:

https://flood-warning-information.service.gov.uk/long-term-flood-risk

Flood Risk from Reservoirs

The Flood Risk from Reservoirs map can be found on the Long Term Flood Risk Information website:

https://flood-warning-information.service.gov.uk/long-term-flood-risk/map?map=Reservoirs

Flood Alert & Flood Warning Area

We issue flood alert/warnings to specific areas when flooding is expected. If you receive a flood warning you should take immediate action.

You can check whether you are in a Flood Alert/Warning Area and register online using the links below:

https://www.gov.uk/check-flood-risk

https://www.gov.uk/sign-up-for-flood-warnings

If you would prefer to register by telephone, or if you need help during the registration process, please call Floodline on 0345 988 1188.

The associated dataset for flood warning areas is available here:

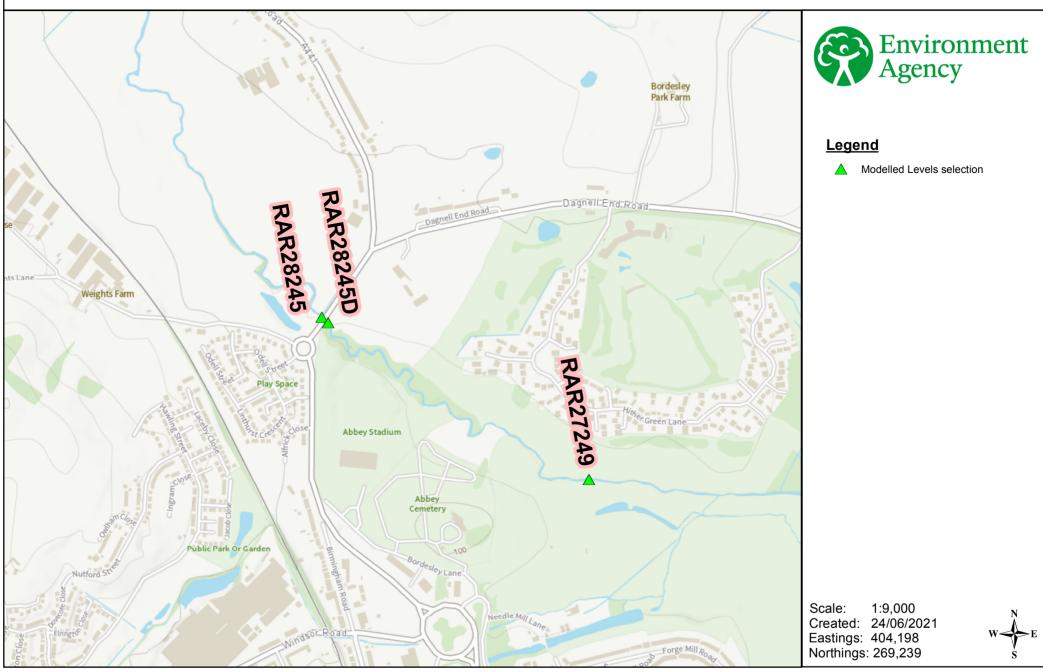
https://data.gov.uk/dataset/flood-warning-areas3

The associated dataset for flood alert areas is available here: https://data.gov.uk/dataset/flood-alert-areas2

Flood Risk Activity Permits

We now consider applications for works, which may be Flood Risk Activities, under Environmental Permitting Regulations. This replaces the process of applying for a Flood Defence Consent. You may need an environmental Permit for flood risk activities if you want to do work:

- in, under, over or near a main river (including where the river is in a culvert)
- on or near a flood defence on a main river
- in the flood plain of a main river
- on or near a sea defence


Please go to this website to find out more about how to apply: https://www.gov.uk/guidance/flood-risk-activities-environmental-permits.

Please be aware that Bespoke and Standard Rules permits can take up to 2 months to determine and will incur a charge.

Further details about the Environment Agency information supplied can be found on the GOV.UK website:

https://www.gov.uk/browse/environment-countryside/flooding-extreme-weather

Node Point Location Plan, Ref. 212168

Appendix 4 – HR Wallingford Greenfield Runoff Rate Calculation

Greenfield runoff rate

www.uksuds.com | Greenfield runoff tool

Calculated by: Mathew Grainger Site name: Hither Green Lane Site location: Redditch

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

estimation for sites

Site Details

Latitude: 52.32094° N Longitude: 1.93949° W

Reference: 3894177153

Date: Jul 07 2021 09:28

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR

Calculate from SOIL type

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

SOIL type: **HOST class:** SPR/SPRHOST:

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Detault	Ealtea							
4	4							
N/A	N/A							
0.47	0.47							

Default Edited 711 711 4 4

	/
0.83	0.83
2	2

2	2
2.57	2.57

3.04

3.04

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Q_{BAR} (I/s): 1 in 1 year (l/s): 1 in 30 years (I/s):

1 in 100 year (l/s):

1 in 200 years (I/s):

Default	Edited
4.92	4.92
4.08	4.08
9.83	9.83
12.64	12.64
14.95	14.95

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix 5 – 21169 – Hither Green SW Input and Results

Travis Baker Limited Project Number 21169

Drainage Design Report

Flow

v10.1

Copyright © 1988-2021 Causeway Technologies Ltd

Network Storm Network 1

Filename 21169-HITHER GREEN SW&FW.PFD

Username Mathew Grainger (mathew.grainger@travisbaker.co.uk)

Last analysed 12/07/2021 12:06:05

Report produced on 12/07/2021 12:23:18

Causeway Sales

Tel: +44(0) 1628 552000 Fax: +44(0) 1628 552001

Email: marketing@causeway.com

Web: www.causeway.com

Technical support web portal:

http://support.causeway.com

Rainfall Methodology	FSR
6 ,	
Return Period (years)	2
Additional Flow (%)	0
FSR Region	England and Wales
M5-60 (mm)	20.000
Ratio-R	0.400
cv	0.750
Time of Entry (mins)	5.00
Maximum Time of Concentration (mins)	30.00
Maximum Rainfall (mm/hr)	50.0
Minimum Velocity (m/s)	1.00
Connection Type	Level Soffits
Minimum Backdrop Height (m)	9.000
Preferred Cover Depth (m)	1.200
Include Intermediate Ground	Yes
Enforce best practice design rules	Yes

1	Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)	US Node	Dia (mm)	Width (mm)	Sump (m)	Node Type	MH Type	DS Node	Dia (mm)	Width (mm)	Sump (m)	Node Type	MH Type
1985 1985			34.4									1	1200					2	1200				
19					- "							2						3	1500				
10												3						4 25	1500				
1					- "							35						36	1200				
1985 1985		9.378					98.922					36	1200					37	1200				
1.00		23.396					99.352			99.103		40	1200					41	1200				
1975 1975	3.001	7.114	82.3	225	Circular_Default Sewer Type	100.564	99.103	1.236	100.487	99.017	1.245	41	1200			Manhole	Adoptable	42	1200			Manhole	Adoptable
1.00		0.700	07.7				00.017			00.000		42	1200			IVIOI II IOIO		37	1200			TVICE II TOTO	1000010000
1.00												37						38	1200				
1985 1986												38						39					-
												39						4	1500				
100		11.700									3.461	5	1000					6	1500				
March 1968 1978 1979											3.282	6	1000					7	1500				
1906 1906	1.006	20.943	487.1	525		98.715	94.908	3.282	98.164	94.865	2.774	7	1500			Manhole	Adoptable	8	1500			Manhole	Adoptable
1980 1980	1.007	9.792	576.0	600	Circular_Default Sewer Type	98.164	94.790	2.774	97.830	94.773	2.457	8	1500			Manhole	Adoptable	9	1500			Manhole	Adoptable
1900 1900	1.008	9.041	565.0	600	Circular_Default Sewer Type	97.830	94.773	2.457	97.519	94.757	2.162	9	1500			Manhole	Adoptable	10	1500			Manhole	Adoptable
1971 1960 1970 1980												10						11	1500				
1902 1540													1000					12	1500				
1970 1970																		13	1500				
March 1977 1972												13	1500					14	1500	-			
1400 23.07 75.0 50 Price Charled from Fig. 14.10 1.70 10.20 1					**							15	1500					16	1500				
1.00 1.00												16	1500					17	1500				
1.50 7.77 1.60 7.85 7.50												43	1200					44	1200				_
1,000 1,00	4.001	7.714	146.7	225		100.793	99.337	1.231	100.716	99.284		44	1200			Manhole	Adoptable	45	1200			Manhole	Adoptable
100 100	4.002	25.980	78.2	225			99.284			98.952		45	1200				Adoptable	46	1200			Manhole	
40.00												46						47	1200				
1.00 1.00												47						48	1200				
1.500 1.500 1.500 2.50												48						49					
Second S												49						50	1000				
Application Control												58						50	1500				
1.000 10.007 50.2 50.7 Create Defaul Stewart Pipe 96.009 96.009 96.000 96.0	4.007	61.808		375		96.100	94.458		95.329	93.754		50	1500				Adoptable	51	1500			Manhole	Adoptable
4.00 6.00	4.008	15.057		375	Circular_Default Sewer Type	95.329	93.754			93.255		51	1500			Manhole	Adoptable	52	1500			Manhole	
4011 11.40 77.8 4 40 Corean Detail Sever Type	4.009	17.692	42.0	375	Circular_Default Sewer Type	94.902	93.255	1.272	94.408	92.833	1.200	52	1500			Manhole	Adoptable	53	1500			Manhole	Adoptable
April									0.1100			53						54	1500				
4.013		11.440	75.8				92.589			92.438		54	1500				Adoptable	55	1500				Adoptable
1.016 27.288 615 675 Creater Defaul Sewer Type 93.26 91.290 1.227 93.296 91.290 1.227 1.924 1.905												55						56	1500				
1017 1188												5b	1000					17	1500				
1.018 20.73 52 675 Carolar Default Sever Type 93.106 91.286 91.280 1.242 93.000 90.381 1.964 19 1.500 Methode Adoptable 20 1.1800 Methode Adoptable 20 1.1800 Methode Adoptable 21 1.1800 Methode Adoptable 22 1.1800 Methode Adoptable 23 1.1800 Methode Adoptable 23 1.1800 Methode Adoptable 23 1.1800 Methode Adoptable 23 1.1800 Methode Adoptable 24 1.1800 Methode Adoptable 25 1.1800 Methode Adop												18						19	1500				
1.019 28.756 48.6 750 Circular_Default Sewer Type 93.000 90.286 1.964 93.100 90.228 2.122 20 1800 Manhole Adoptable 21 1800 Manhole Adoptable 20 1800 Manhole Adoptable 22 1800 Manhole Adoptable 22 1800 Manhole Adoptable 23 1800 Manhole Adoptable 24 1800 Manhole Adoptable 25 1800 Manhole Adoptable 26 1800 Manhole Adoptable 27 1800 Manhole Adoptable 27 1800 Manhole Adoptable 28 180												19	1500					20	1800				
1.021 13.860 50.0 75 Circular, Default Sever Type 93.025 90.109 2.166 92.697 90.081 1.866 22 1800 Manhole Adoptable 6.000 7.762 24.6 225 Circular, Default Sever Type 96.440 95.102 1.113 96.264 94.787 1.252 99 1200 Manhole Adoptable 6.0 1		28.758					90.286			90.228		20	1800				Adoptable	21	1800			Manhole	Adoptable
6.000 7.762 24.6 225 Circular Default Sewer Type 96.440 95.102 1.113 96.264 94.787 1.252 99. 1200 90. 1200 Manhole Adoptable 60 1200 Manhole Adoptable 60.001 1200 Manhole Adoptable 61 1200 Manhole Adoptable 60.002 8.938 43.4 225 Circular Default Sewer Type 96.047 94.622 1.200 95.841 94.416 1.200 81 1200 Manhole Adoptable 61 1200 Manhole Adoptable 60.003 16.294 56.4 300 Circular Default Sewer Type 95.841 94.341 1.200 95.852 94.052 1.230 62 1200 Manhole Adoptable 63 1200 Manhole Adoptable 60.003 14.593 324.3 300 Circular Default Sewer Type 95.841 94.941 1.200 95.852 94.052 1.230 62 1200 Manhole Adoptable 64 1500 Manhole Adoptable 60.005 14.593 324.3 300 Circular Default Sewer Type 95.800 93.729 1.896 95.880 93.894 1.791 64 1500 Manhole Adoptable 65 1500 Manhole Adoptable 66.005 14.593 324.3 375 Circular Default Sewer Type 95.800 93.814 1.811 94.709 93.334 1.200 66 1500 Manhole Adoptable 66 1500 Manhole Adoptable 66.009 Adoptable 66.009 91.49 49.4 375 Circular Default Sewer Type 95.800 93.814 1.811 94.709 93.334 1.200 66 1500 Manhole Adoptable 68 1500 Manhole Adoptable 66.009 Manhole Adoptable 66.009 Manhole Adoptable 66.009 91.49 49.4 375 Circular Default Sewer Type 95.800 93.814 1.811 94.709 93.334 1.200 66 1500 Manhole Adoptable 68 1500 Manhole Adoptable 66.009 Manhole Adoptable 67 1500 Manhole Adoptable 66.009 Manhole Adoptable 67 1500 Manhole Adoptable 68 1500 Manhole Adoptable 69 1500 Manhole Adoptable 68 1500 Manhole Adoptable 69 1500 Manhole Adoptable 60 1500 Manhole Ado	1.020	59.628	500.0	750	Circular_Default Sewer Type	93.100	90.228	2.122	93.025	90.109	2.166	21	1800			Manhole	Adoptable	22	1800			Manhole	Adoptable
6.001 9.084 55.2 22 Circular Default Sewer Type 96.284 94.787 1.252 96.047 94.622 1.200 60 1200 Manhole Adoptable 61 1200 Manhole Adoptable 62 1200 Manhole Adoptable 62 1200 Manhole Adoptable 62 1200 Manhole Adoptable 63 1200 Manhole Adoptable 64 1500 Manhole Adoptable 65 1200 Manhole Adoptable 67 1200 Manhole Adoptable 68 1200	1.021	13.860	500.0	750	Circular_Default Sewer Type	93.025	90.109	2.166	92.697	90.081	1.866	22	1800			Manhole	Adoptable	23	1800			Manhole	Adoptable
8.002 8.938 43.4 225 Circular, Default Sewer Type 96.047 94.622 1.20 95.841 94.416 1.20 61 1.200 81 Manhole Adoptable 62 1.200 Manhole Adoptable 6.003 16.294 56.4 300 Circular, Default Sewer Type 95.841 94.341 1.200 95.882 94.052 1.230 62 1.200 Manhole Adoptable 63 1.200 Manhole Adoptable 6.004 60.578 2.44.3 30 Circular, Default Sewer Type 95.582 94.052 1.230 95.800 93.804 1.696 63 1.200 Manhole Adoptable 64 1.500 Manhole Adoptable 6.005 14.959 32.3.3 375 Circular, Default Sewer Type 95.880 93.684 1.791 95.800 93.614 1.811 65 1.500 Manhole Adoptable 65 1.500 Manhole Adoptable 6.007 48.858 101.8 375 Circular, Default Sewer Type 95.800 93.614 1.811 94.709 93.134 1.200 66 1.500 Manhole Adoptable 67 1.500 Manhole Adoptable 6.009 92.919 1.276 67 1.500 Manhole Adoptable 6.009 92.018 93.134 1.200 94.000 92.919 1.276 67 1.500 Manhole Adoptable 6.009 Manhole Adoptable 6.009 92.018 93.13 975 Circular, Default Sewer Type 94.016 92.919 1.276 93.018 1.228 88 1500 Manhole Adoptable 6.009 Manhole Adoptable 6.009 92.018 93.13 975 Circular, Default Sewer Type 94.016 92.919 1.276 93.018 1.228 88 1500 Manhole Adoptable 6.009 Manhole Adoptable 6.009 92.018 93.0		7.762										59	1200					60	1200				
6.003 16.294 56.4 300 Circular, Default Sewer Type 95.841 94.341 1.200 95.582 94.052 1.230 95.800 93.804 1.696 63 1200 Manhole Adoptable 64 1500 Manhole Adoptable 66.005 14.593 375 Circular, Default Sewer Type 95.582 94.052 1.230 95.800 93.804 1.696 63 1200 Manhole Adoptable 64 1500 Manhole Adoptable 66.005 14.593 375 Circular, Default Sewer Type 95.800 93.729 1.696 95.800 93.614 1.811 65 1500 Manhole Adoptable 65 1500 Manhole Adoptable 66.007 48.858 101.8 375 Circular, Default Sewer Type 95.800 93.614 1.811 94.709 93.134 1.200 66 1500 Manhole Adoptable 67 1500 Manhole Adoptable 66.009 93.614 1.811 94.709 93.134 1.200 94.600 92.949 1.276 67 1500 Manhole Adoptable 68 1500 Manhole Adoptable 66.009 Manhole Adoptable 77 1500 Manhole Adoptable 66.009 Manhole Adoptable 78 1500 Manhole Adoptable 79 1500 Manhole Adoptable 70 1500 Manhole Adoptable 79 1500 Manhole Adoptable 79 1500 Manhole Adoptable 79 1500 Manhole Adoptable 70 1500 Manhole Adoptable 71 1500 Manhole Adoptable 70 1500 Manhole Adoptable 71 1500 Manhole Adoptable 72 1500 Manhole Adoptable 73 1500 Manhole Adoptable 74 1500 Manhole Adoptable 75 1500 Manhole Adoptabl												60						61					
6.004 60.578 244.3 300 Circular, Default Sewer Type 95.582 94.052 1.230 95.800 93.804 1.696 63 1200 Manhole Adoptable 64 1500 Manhole Adoptable 60.005 14.593 324.3 375 Circular, Default Sewer Type 95.800 93.723 1.696 95.805 93.684 1.791 164 1500 Manhole Adoptable 65 1500 Manhole Adoptable 65 1500 Manhole Adoptable 66.007 48.865 101.8 375 Circular, Default Sewer Type 95.800 93.614 1.811 94.709 93.134 1.200 66 1500 Manhole Adoptable 67 1500 Manhole Adoptable 66.009 49.400 93.144 1.811 94.709 93.134 1.200 94.600 92.949 1.276 67 1500 Manhole Adoptable 88 1500 Manhole Adoptable 88 1500 Manhole Adoptable 89 1500 Manhole Adoptable 80.009 3.000 Manhole Adoptable 80.009 3.000 Manhole Adoptable 80.009 3.000 Manhole Adoptable 80.009 Manhole Adopta												61	1200					62	1200	-			-
6.005 14.582 324.3 375 Circular, Default Sewer Type 95.800 93.729 1.696 95.850 93.684 1.791 95.800 93.614 1.811 65 1500 Manhole Adoptable 65 1500 Manhole Adoptable 66.007 48.858 101.8 375 Circular, Default Sewer Type 95.800 93.614 1.811 94.709 93.134 1.20 66 1500 Manhole Adoptable 67 1500 Manhole Adoptable 68.008 4.949 4.94 4.94 4.94 4.94 4.94 4.94 4.												63						64	1200				
6.006 22.417 320.2 375 Circular, Default Sewer Type 95.850 93.684 1.791 95.800 93.614 1.811 65 1500 Manhole Adoptable 66 1500 Manhole Adoptable 66.007 48.858 101.8 375 Circular, Default Sewer Type 95.800 93.614 1.811 94.709 93.134 1.200 66 1500 Manhole Adoptable 67 1500 Manhole Adoptable 68.008 Manhole Adoptable 67 1500 Manhole Adoptable 68.008 3.91 375 Circular, Default Sewer Type 94.709 93.134 1.200 94.600 92.949 1.276 67 1500 Manhole Adoptable 68 1500 Manhole Adoptable 68.009 3.91 375 Circular, Default Sewer Type 94.000 92.940 1.276 94.016 92.413 1.228 93.645 92.008 1.202 92.413 1.228 93.645 92.008 1.202 92.003 91.111 1.317 70 1500 Manhole Adoptable 70 1500 Manhole Adoptable 71 1500 Manhole 71 1500 Man												64						65	1500				
6.007 48.858 101.8 375 Circular, Distant Sewer Type 95.800 93.614 1.811 94.709 93.134 1.200 66 1500 Manhole Adoptable 67 1500 Manhole Adoptable 60.008 9.149 49.4 375 Circular, Distant Sewer Type 94.709 93.134 1.200 94.800 92.949 1.276 67 1500 Manhole Adoptable 68 1500 Manhole Adoptable 60.009 20.965 39.1 375 Circular, Distant Sewer Type 94.600 92.949 1.276 94.016 92.413 1.226 88 1500 Manhole Adoptable 70 1500 Manhole 70 1500 M												65						66					
6.008 9.148 49.4 375 Circular, Default Sever Type 94.709 93.134 1.200 94.600 92.949 1.276 67 1500 Manhole Adoptable 68 1500 Manhole Adoptable 60.009 20.965 39.1 375 Circular, Default Sever Type 94.600 92.949 1.276 94.016 92.413 1.228 68 1500 Manhole Adoptable 70 1500 Manhole 70 1500 Manhole Adoptable 70 1500 Manhole 70 1				375						93.134		66	1500					67	1500				_
6.010 13.953 40.5 375 Circular, Default Sewer Type 94.016 82.413 1.228 93.645 92.088 1.202 69 1500 Manhole Adoptable 70 1500 Manhole Adoptable 6.011 32.085 33.5 375 Circular, Default Sewer Type 93.645 92.088 1.202 92.003 91.111 1.317 70 1500 Manhole Adoptable 71 1500 Manhole 71 1500 Manhol	6.008	9.149	49.4			94.709	93.134	1.200	94.600	92.949	1.276	67	1500			Manhole	Adoptable	68	1500			Manhole	Adoptable
6.011 32.065 33.5 375 Circular, Default Sever Type 93.645 92.065 1.202 92.803 91.11 1.317 70 1500 Manhole Adoptable 71 1500 Manhole Adoptable 6.012 11.725 17.9 375 Circular, Default Sever Type 92.803 91.11 1.317 92.697 90.466 1.866 71 1500 Manhole Adoptable 23 1800 Manhole Adoptable 1.022 15.230 500.0 750 Circular, Default Sever Type 92.697 90.061 1.866 92.800 90.051 1.999 23 1800 Manhole Adoptable 24 1800 Manhole Adoptable 1.023 22.498 30.4 900 Circular, Default Sever Type 92.800 89.901 1.999 92.700 89.191 2.659 24 1800 Manhole Adoptable 25 1800 Manhole Adoptable 26 Adoptable 27 1800 Manhole Adoptable 28 180	0.000								0.10.0			68						69	1500				
6.012 11.725 17.9 375 Circular, Default Sewer Type 92.803 91.111 1.317 92.667 90.456 1.866 71 1500 Manhole Adoptable 23 1800 Manhole Adoptable 1.022 15.230 500.0 750 Circular, Default Sewer Type 92.697 90.081 1.866 92.800 90.051 1.999 23 1800 Manhole Adoptable 24 1800 Manhole Adoptable 1.023 22.498 30.4 900 Circular, Default Sewer Type 92.800 89.901 1.999 92.700 89.161 2.639 24 1800 Manhole Adoptable 25 1800 Manhole Adoptable												69	1000					70	1500				
1.022 15.230 50.0 750 Circular_Default Sewer Type 92.697 90.081 1.866 92.800 90.051 1.999 23 1800 Manhole Adoptable 24 1800 Manhole Adoptable 1.023 22.498 30.4 900 Circular_Default Sewer Type 92.800 89.901 1.999 92.700 89.161 2.639 24 1800 Manhole Adoptable 25 1800 Manhole Adoptable		02.000					02.000			01.1111		70	1000					71	1500				
1.023 22.496 30.4 900 Circular, Default Sewer Type 92.800 89.901 1.999 92.700 89.161 2.639 24 1800 Manhole Adoptable 25 1800 Manhole Adoptable					// -					00.100		/1	1000					23	1800	-			
																		25	1800				_
	1.023	22.498	498.8	900		92.800	89.901	1.999	92.700	89,088	1.608	25	1800			Manhole	Adoptable	26	1800			Manhole	Adoptable

7.000	10.549	146.3	225 Circular_Default Sewer Type	94.413	92.942	1.246	94.296	92.870	1.201	72	1200	Manhole	Adoptable	73	1200	Manhole	Adoptable
7.001	8.472	60.6	225 Circular_Default Sewer Type	94.296	92.870	1.201	94.155	92.730	1.200	73	1200	Manhole	Adoptable	74	1200	Manhole	Adoptable
7.002	27.431	20.7	225 Circular_Default Sewer Type	94.155	92.730	1.200	92.948	91.403	1.320	74	1200	Manhole	Adoptable	75	1200	Manhole	Adoptable
7.003	10.965	84.3	225 Circular_Default Sewer Type	92.948	91.403	1.320	92.710	91.273	1.212	75	1200	Manhole	Adoptable	76	1200	Manhole	Adoptable
7.004	14.335	109.4	225 Circular_Default Sewer Type	92.710	91.273	1.212	92.567	91.142	1.200	76	1200	Manhole	Adoptable	77	1200	Manhole	Adoptable
7.005	20.750	40.1	300 Circular_Default Sewer Type	92.567	91.067	1.200	92.053	90.550	1.203	77	1200	Manhole	Adoptable	78	1200	Manhole	Adoptable
7.006	9.361	33.4	300 Circular_Default Sewer Type	92.053	90.550	1.203	91.770	90.270	1.200	78	1200	Manhole	Adoptable	79	1200	Manhole	Adoptable
7.007	6.676	11.5	300 Circular_Default Sewer Type	91.770	90.270	1.200	91.596	89.688	1.608	79	1200	Manhole	Adoptable	26	1800	Manhole	Adoptable
1.025	6.517	500.0	900 Circular_Default Sewer Type	91.596	89.088	1.608	91.409	89.075	1.434	26	1800	Manhole	Adoptable	27	2100	Manhole	Adoptable
1.026	43.897	42.2	900 Circular_Default Sewer Type	91.409	89.075	1.434	90.435	88.035	1.500	27	2100	Manhole	Adoptable	28	2100	Manhole	Adoptable
1.027	25.855	507.0	900 Circular_Default Sewer Type	90.435	88.035	1.500	90.400	87.984	1.516	28	2100	Manhole	Adoptable	29	2100	Manhole	Adoptable
1.028	30.611	501.8	900 Circular_Default Sewer Type	90.400	87.984	1.516	90.723	87.923	1.900	29	2100	Manhole	Adoptable	30-HW	1800	Manhole	Adoptable
1.029	11.528	501.2	900 Circular_Default Sewer Type	90.723	87.923	1.900	90.700	87.900	1.900	30-HW	1800	Manhole	Adoptable	31-HW	1500	Manhole	Adoptable
1.030	32.293	496.8	900 Circular_Default Sewer Type	90.700	87.900	1.900	91.035	87.835	2.300	31-HW	1500	Manhole	Adoptable	32-FC	3000	Manhole	Adoptable
1.031	35.511	50.7	900 Circular_Default Sewer Type	91.035	87.835	2.300	89.000	87.135	0.965	32-FC	3000	Manhole	Adoptable	33-OF	1800	Manhole	Adoptable

Rainfall Methodology	FSR	Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
FSR Region	England and Wales	2	0	0	0
M5-60 (mm)	20.000	30	0	0	0
Ratio-R	0.400	100	40	0	0
Summer CV	0.750				
Winter CV	0.840				
Analysis Speed	Normal				
Skip Steady State	Yes				
Drain Down Time (mins)	240				
Additional Storage (m³/ha)	20.0				
Storm Durations (mins)	15				
	30				
	60				
	120				
	180				
	240				
	360				
	480				
	600				
	720				
	960				
	1440				
Check Discharge Rate(s)	Yes				
Check Discharge Volume	Yes				
100 year 360 minute (m³)					

Site Makeup	Greenfield
Greenfield Method	IH124
Positively Drained Area (ha)	
SAAR (mm)	
Soil Index	1
SPR	0.10
Region	1
Growth Factor 1 year	0.85
Growth Factor 30 year	1.95
Growth Factor 100 year	2.48
Betterment (%)	0
QBar	
Q 1 year (I/s)	
Q 30 year (I/s)	
Q 100 year (I/s)	

Site Makeup	Greenfield
Greenfield Method	FSR/FEH
Positively Drained Area (ha)	
Soil Index	1
SPR	0.10
CWI	
Return Period (years)	100
Climate Change (%)	0
Storm Duration (mins)	360
Betterment (%)	0
PR	
Runoff Volume (m³)	

Hydro-Brake®												
Node	Flap Valve	Online / Offline	Replaces Downstream Link	Loop to Node	Invert Level (m)	Design Depth (m)	Design Flow (I/s)	Objective	Sump Available	Product Number	Min Outlet Diameter (m)	Min Node Diameter (mm)
32-FC	No	Online	Yes		87.835	1.300	19.6	(HE) Minimise upstream storage	Yes	CTL-SHE-0193-1960-1300-1960	0.225	1500

Depth/Area/Inf Area									
Node	Base Inf Coefficient (m/hr)	Side Inf Coefficient (m/hr)	Safety Factor	Porosity	Invert Level (m)	Time to half empty (mins)	Depth (m)	Area (m²)	Inf. Area (m²)
31-HW	0.00000	0.00000	2.0	1.00	86.700	0	0.000	555.6	0.0
							1.200	1324.5	0.0
							1.201	1547.8	0.0
							1.800	2017.2	0.0
							1.801	2281.0	0.0
							2.300	2713.6	0.0
							2.301	3000.0	0.0
							2.800	3486.9	0.0

Results for 2 year Criti	cal Storm Duration	on. Lowest mass	s balance: 99.89	%												
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	Link Event (Upstream Depth)	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	10	95.983	0.051	9.7	0.0965	0.0000	OK	15 minute winter	1.000	2	9.6	1.438	0.107	0.1045	
15 minute winter	2	10	95.512	0.112	19.3	0.1709	0.0000	OK	15 minute winter	1.001	3	18.9	0.831	0.266	0.3438	
15 minute winter	3	11	95.420	0.157	28.6	0.3290	0.0000	OK	15 minute winter	1.002	4	27.2	0.597	0.244	1.5204	
15 minute winter	34	10	99.635	0.043	9.7	0.0813	0.0000	OK	15 minute winter	2.000	35	9.6	0.829	0.082	0.1053	
15 minute winter	35	10	99.253	0.108	19.3	0.2005	0.0000	OK	15 minute winter	2.001	36	18.8	0.799	0.473	0.8977	
15 minute winter	36	11	99.075	0.153	28.5	0.2688	0.0000	OK	15 minute winter	2.002	37	28.1	1.039	0.703	0.2539	
15 minute winter	40	10	99.416	0.064	9.7	0.1192	0.0000	OK	15 minute winter	3.000	41	9.5	0.717	0.178	0.3140	
15 minute winter	41	10	99.206	0.102	19.2	0.1902	0.0000	OK	15 minute winter	3.001	42	18.9	1.010	0.329	0.1332	
15 minute winter	42	10	99.130	0.113	28.6	0.2087	0.0000	OK	15 minute winter	3.002	37	28.2	1.534	0.411	0.1605	
15 minute winter	37	11	98.931	0.140	65.3	0.2495	0.0000	OK	15 minute winter	2.003	38	65.6	1.848	0.403	0.6999	
15 minute winter	38	11	98.532	0.162	74.7	0.2979	0.0000	OK	15 minute winter	2.004	39	75.1	2.949	0.392	0.2875	<u> </u>
15 minute winter	39	11	98.114	0.072	84.2	0.1328	0.0000	OK	15 minute winter	2.005	4	84.3	4.805	0.132	0.2112	
15 minute winter	4	11	95.409	0.304	120.5	0.6134	0.0000		15 minute winter	1.003	5	119.5	1.168	0.748	1.8713	
15 minute winter	5	11	95.325	0.339	128.6	0.6871	0.0000	OK	15 minute winter	1.004	6	127.0	0.871	0.587	2.9177	
15 minute winter	6	12	95.287	0.341	136.1	0.6929	0.0000	OK	15 minute winter	1.005	7	133.1	0.924	0.615	2.7542	
15 minute winter	7	12	95.242	0.334	142.2	0.6829	0.0000	OK	15 minute winter	1.006	8	141.1	1.047	0.647	2.9206	
15 minute winter	8	12	95.178	0.388	148.6	0.8070	0.0000	OK	15 minute winter	1.007	9	148.4	0.786	0.521	1.8666	
15 minute winter	9	12	95.154	0.381	155.9	0.8051	0.0000	OK	15 minute winter	1.008	10	155.6	0.851	0.541	1.6714	
15 minute winter	10	12	95.125	0.368	163.0	0.7913	0.0000	OK	15 minute winter	1.009	11	162.3	0.914	0.566	3.6527	
15 minute winter	11	12	95.079	0.358	169.8	0.8083	0.0000	OK	15 minute winter	1.010	12	168.1	1.004	0.593	3.3130	
15 minute winter	12	13	95.021	0.334	175.6	0.7864	0.0000	OK	15 minute winter	1.011	13	174.3	1.229	0.614	6.8990	
15 minute winter	13	13	94.803	0.275	179.8	0.6175	0.0000	OK	15 minute winter	1.012	14	180.4	1.681	0.495	1.6899	
15 minute winter	14	13	94.689	0.185	185.9	0.4210	0.0000	OK	15 minute winter	1.013	15	186.5	2.802	0.135	1.5342	
15 minute winter	15	13	94.153	0.142	192.0	0.3316	0.0000	OK	15 minute winter	1.014	16	192.4	1.664	0.102	6.6386	
15 minute winter	16	13	92.102	0.345	197.9	0.7595	0.0000	OK	15 minute winter	1.015	17	200.7	1.348	0.561	4.0501	
15 minute winter	43	10	99.561	0.061	9.7	0.1136	0.0000	OK	15 minute winter	4.000	44	9.6	0.654	0.160	0.1825	
15 minute winter	44	10	99.455	0.118	19.3	0.2199	0.0000	OK	15 minute winter	4.001	45	19.0	0.913	0.443	0.1602	
15 minute winter	45	10	99.399	0.115	28.7	0.2151	0.0000	OK	15 minute winter	4.002	46	28.2	1.410	0.480	0.5227	
15 minute winter	46	10	99.065	0.113	37.9	0.2111	0.0000	OK	15 minute winter	4.003	47	37.6	1.951	0.412	0.1776	
15 minute winter	47	11	98.778	0.108	47.1	0.2022	0.0000	OK	15 minute winter	4.004	48	47.2	2.573	0.441	0.6864	
15 minute winter	48	11	97.118	0.097	56.3	0.1778	0.0000	OK	15 minute winter	4.005	49	56.5	1.927	0.228	1.2978	
15 minute winter	49	11	95.040	0.166	65.6	0.2812	0.0000	OK	15 minute winter	4.006	50	65.8	1.724	0.533	1.0577	
15 minute winter	57	10	95.117	0.057	9.7	0.1072	0.0000	OK	15 minute winter	5.000	58	9.6	0.716	0.143	0.2140	
15 minute winter	58	11	94.911	0.112	19.3	0.2033	0.0000	OK	15 minute winter	5.001	50	18.8	0.979	0.472	0.6255	
15 minute winter	50	11	94.640	0.182	93.7	0.4401	0.0000	OK	15 minute winter	4.007	51	93.7	2.014	0.439	2.8767	
15 minute winter	51	11	93.901	0.147	102.8	0.3581	0.0000	OK	15 minute winter	4.008	52	102.1	2.333	0.279	0.6607	
15 minute winter	52	11	93.423	0.168	111.2	0.4052	0.0000	OK	15 minute winter	4.009	53	110.7	1.991	0.357	0.9836	
15 minute winter	53	11	93.043	0.210	119.8	0.5118	0.0000	OK	15 minute winter	4.010	54	118.8	2.096	0.453	0.5600	
15 minute winter	54	11	92.805	0.216	127.9	0.5210	0.0000	OK	15 minute winter	4.011	55	127.4	1.698	0.343	0.8609	
15 minute winter	55	11	92.654	0.216	136.5	0.5208	0.0000	OK	15 minute winter	4.012	56	135.3	1.988	0.367	0.9301	
15 minute winter	56	11	92.379	0.192	144.4	0.4582	0.0000	OK	15 minute winter	4.013	17	144.1	2.169	0.242	1.3998	
15 minute winter	17	13	92.001	0.281	336.8	0.6528	0.0000		15 minute winter	1.016	18	340.1	1.937	0.292	4.8870	
15 minute winter	18	13	91.679	0.386	345.6	0.8903	0.0000	OK	15 minute winter	1.017	19	362.0	2.447	0.864	1.7736	
15 minute winter	19	12	91.468	0.199	367.5	0.4619	0.0000	OK	15 minute winter	1.018	20	357.9	2.308	0.182	3.4466	
15 minute winter	20	13	90.799	0.513	363.4	1.5054	0.0000		15 minute winter	1.019	21	359.3	1.161	0.651	9.0489	
15 minute winter	21	14	90.724	0.496	364.8	1.4451	0.0000		15 minute winter	1.020	22	353.2	1.101	0.642	19.1267	

	_				ı	ı	ı									
15 minute winter	22	14	90.639	0.530	357.1	1.5409	0.0000	OK	15 minute winter	1.021	23	363.1	1.126	0.660	4.4768	
15 minute winter	59	10	95.148	0.046	9.7	0.0882	0.0000	OK	15 minute winter	6.000	60	9.6	0.985	0.092	0.0775	
15 minute winter	60	10	94.874	0.087	19.3	0.1609	0.0000	OK	15 minute winter	6.001	61	19.1	1.191	0.273	0.1460	
15 minute winter	61	10	94.726	0.104	28.8	0.1954	0.0000	OK	15 minute winter	6.002	62	28.5	1.707	0.360	0.1493	
15 minute winter	62	10	94.449	0.108	38.2	0.1987	0.0000	OK	15 minute winter	6.003	63	37.9	1.185	0.256	0.5463	
15 minute winter	63	11	94.234	0.182	47.6	0.3321	0.0000	OK	15 minute winter	6.004	64	46.2	1.091	0.652	2.5695	
15 minute winter	64	11	93.939	0.210	55.3	0.4783	0.0000	OK	15 minute winter	6.005	65	55.0	0.888	0.498	0.9044	
15 minute winter	65	11	93.886	0.202	64.1	0.4559	0.0000	OK	15 minute winter	6.006	66	63.6	1.207	0.572	1.1851	
15 minute winter	66	11	93.775	0.161	72.7	0.3626	0.0000	OK	15 minute winter	6.007	67	71.7	1.622	0.362	2.1738	
15 minute winter	67	12	93.291	0.157	80.8	0.3842	0.0000	OK	15 minute winter	6.008	68	80.3	1.966	0.282	0.3741	
15 minute winter	68	11	93.090	0.141	88.5	0.3407	0.0000	OK	15 minute winter	6.009	69	88.4	2.152	0.276	0.8638	
15 minute winter	69	11	92.571	0.159	96.9	0.3859	0.0000	OK	15 minute winter	6.010	70	96.7	2.281	0.307	0.5925	
15 minute winter	70	11	92.216	0.148	105.1	0.3618	0.0000	OK	15 minute winter	6.011	71	105.0	2.676	0.303	1.2583	
15 minute winter	71	12	91.252	0.141	113.2	0.3387	0.0000	OK	15 minute winter	6.012	23	113.4	3.265	0.239	0.4076	
15 minute winter	23	14	90.583	0.502	453.1	1.4817	0.0000	OK	15 minute winter	1.022	24	456.8	1.617	0.831	4.2964	
15 minute winter	24	14	90.135	0.234	460.7	0.6814	0.0000	OK	15 minute winter	1.023	25	462.0	1.921	0.128	5.4867	
15 minute winter	25	14	89.656	0.495	465.9	1.4066	0.0000	OK	15 minute winter	1.024	26	467.9	1.394	0.527	12.2177	
15 minute winter	72	10	93.019	0.077	9.7	0.1434	0.0000	OK	15 minute winter	7.000	73	9.6	0.708	0.223	0.1426	
15 minute winter	73	10	92.961	0.091	19.3	0.1698	0.0000	OK	15 minute winter	7.001	74	19.0	1.426	0.285	0.1133	
15 minute winter	74	10	92.806	0.076	28.7	0.1426	0.0000	OK	15 minute winter	7.002	75	28.5	1.369	0.248	0.5695	
15 minute winter	75	11	91.561	0.158	38.2	0.2871	0.0000	OK	15 minute winter	7.003	76	37.6	1.133	0.664	0.3652	
15 minute winter	76	11	91.470	0.197	47.0	0.3676	0.0000	OK	15 minute winter	7.004	77	47.1	1.353	0.949	0.4979	
15 minute winter	77	11	91.188	0.121	56.2	0.2229	0.0000	OK	15 minute winter	7.005	78	56.4	1.921	0.320	0.6089	
15 minute winter	78	11	90.689	0.139	65.5	0.2558	0.0000	OK	15 minute winter	7.006	79	65.6	2.311	0.340	0.2659	
15 minute winter	79	11	90.385	0.115	74.7	0.2110	0.0000	OK	15 minute winter	7.007	26	74.8	3.381	0.227	0.1479	
15 minute winter	26	14	89.535	0.447	513.8	1.3264	0.0000	OK	15 minute winter	1.025	27	513.8	2.338	0.579	1.4822	
15 minute winter	27	14	89.321	0.246	518.8	0.9655	0.0000	OK	15 minute winter	1.026	28	519.6	1.886	0.169	12.3585	
15 minute winter	28	14	88.604	0.569	523.5	2.2217	0.0000	OK	15 minute winter	1.027	29	518.8	1.267	0.589	10.5847	
15 minute winter	29	15	88.524	0.540	522.7	2.1060	0.0000	OK	15 minute winter	1.028	30-HW	518.2	1.370	0.585	11.5831	
15 minute winter	30-HW	15	88.421	0.498	518.2	1.2673	0.0000	OK	15 minute winter	1.029	31-HW	520.9	1.600	0.588	3.7525	
240 minute winter	31-HW	240	88.246	0.346	137.7	582.5882	0.0000	OK	240 minute winter	1.030	32-FC	20.7	0.296	0.023	8.1829	
240 minute winter	32-FC	240	88.246	0.411	20.7	2.9063	0.0000	OK	240 minute winter	Hydro-Brake®	33-OF	19.6				454.7
15 minute summer	33-OF	1	87.135	0.000	18.6	0.0000	0.0000	OK								

Results for 30 year Critic	al Storm Duration	on. Lowest mas	s balance: 99.89	9%												
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	Link Event (Upstream Depth)	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	10	96.001	0.069	18.3	0.1288	0.0000		15 minute winter	1.000	2	18.2	1.564	0.204	0.3904	
15 minute winter	2	11	95.834	0.434	36.5	0.6632	0.0000	SURCHARGED	15 minute winter	1.001	3	32.6	0.887	0.459	1.0602	
15 minute winter	3	11	95.817	0.554	49.4	1.1571	0.0000	SURCHARGED	15 minute winter	1.002	4	50.0	0.600	0.450	2.9357	
15 minute winter	34	10	99.652	0.060	18.3	0.1116	0.0000		15 minute winter	2.000	35	18.2	0.945	0.154	0.2073	
15 minute winter	35	11	99.363	0.218	36.5	0.4052	0.0000	OK	15 minute winter	2.001	36	34.1	0.882	0.857	1.4988	
15 minute winter	36	10	99.191	0.269	51.2	0.4727	0.0000	SURCHARGED	15 minute winter	2.002	37	50.5	1.284	1.261	0.3518	
15 minute winter	40	10	99.441	0.089	18.3	0.1668	0.0000	OK	15 minute winter	3.000	41	18.1	0.794	0.338	0.5294	
15 minute winter	41	10	99.265	0.162	36.4	0.3006	0.0000	OK	15 minute winter	3.001	42	35.7	1.118	0.623	0.2274	
15 minute winter	42	10	99.193	0.176	54.0	0.3264	0.0000	OK	15 minute winter	3.002	37	53.4	1.749	0.778	0.2656	
15 minute winter	37	10	99.010	0.219	122.2	0.3912	0.0000	OK	15 minute winter	2.003	38	121.5	2.039	0.747	1.1713	
15 minute winter	38	11	98.625	0.255	139.7	0.4694	0.0000	OK	15 minute winter	2.004	39	139.7	3.228	0.729	0.4671	
15 minute winter	39	11	98.141	0.099	157.0	0.1826	0.0000	OK	15 minute winter	2.005	4	157.2	5.119	0.246	0.3886	
15 minute winter	4	11	95.797	0.692	220.1	1.3973	0.0000	SURCHARGED	15 minute winter	1.003	5	216.7	1.368	1.355	2.8149	
15 minute winter	5	11	95.666	0.680	234.0	1.3765	0.0000	SURCHARGED	15 minute winter	1.004	6	231.8	1.073	1.071	4.2742	
15 minute winter	6	12	95.593	0.647	249.1	1.3158	0.0000	SURCHARGED	15 minute winter	1.005	7	246.8	1.142	1.140	4.0597	
15 minute winter	7	12	95.515	0.607	264.1	1.2418	0.0000	SURCHARGED	15 minute winter	1.006	8	262.1	1.213	1.201	4.5244	
15 minute winter	8	12	95.421	0.631	279.4	1.3136	0.0000	SURCHARGED	15 minute winter	1.007	9	276.9	0.983	0.972	2.7582	
15 minute winter	9	12	95.383	0.610	294.2	1.2897	0.0000	SURCHARGED	15 minute winter	1.008	10	290.6	1.042	1.011	2.5383	
15 minute winter	10	12	95.342	0.585	307.9	1.2586	0.0000	OK	15 minute winter	1.009	11	305.8	1.111	1.067	5.6625	
15 minute winter	11	12	95.277	0.556	320.1	1.2566	0.0000	OK	15 minute winter	1.010	12	320.6	1.213	1.131	5.2084	
15 minute winter	12	12	95.196	0.509	334.9	1.1979	0.0000	OK	15 minute winter	1.011	13	333.8	1.496	1.175	10.7456	
15 minute winter	13	12	94.921	0.393	348.1	0.8814	0.0000	OK	15 minute winter	1.012	14	347.7	1.996	0.954	2.7334	
15 minute winter	14	12	94.775	0.271	361.9	0.6164	0.0000	OK	15 minute winter	1.013	15	360.9	3.277	0.262	2.5358	
15 minute winter	15	12	94.210	0.199	375.2	0.4629	0.0000	OK	15 minute winter	1.014	16	372.8	1.882	0.197	10.9015	
15 minute winter	16	12	92.292	0.535	387.1	1.1777	0.0000	OK	15 minute winter	1.015	17	387.3	1.502	1.082	7.0070	
15 minute winter	43	10	99.584	0.084	18.3	0.1582	0.0000	OK	15 minute winter	4.000	44	18.2	0.721	0.303	0.3055	
15 minute winter	44	10	99.529	0.193	36.5	0.3580	0.0000	OK	15 minute winter	4.001	45	35.7	1.010	0.834	0.2727	
15 minute winter	45	10	99.467	0.183	54.0	0.3415	0.0000	OK	15 minute winter	4.002	46	53.3	1.560	0.907	0.8895	
15 minute winter	46	11	99.132	0.180	71.4	0.3381	0.0000	OK	15 minute winter	4.003	47	71.2	2.171	0.780	0.3018	
15 minute winter	47	11	98.836	0.166	88.8	0.3116	0.0000	OK	15 minute winter	4.004	48	89.2	2.937	0.832	1.1352	
15 minute winter	48	11	97.157	0.136	106.5	0.2507	0.0000	OK	15 minute winter	4.005	49	106.7	2.142	0.431	2.1806	
15 minute winter	49	11	95.157	0.283	124.0	0.4802	0.0000	OK	15 minute winter	4.006	50	121.1	1.905	0.981	1.8678	
15 minute winter	57	10	95.139	0.079	18.3	0.1490	0.0000	OK	15 minute winter	5.000	58	18.2	0.816	0.270	0.3526	
15 minute winter	58	11	94.974	0.174	36.5	0.3170	0.0000	OK	15 minute winter	5.001	50	35.5	1.131	0.893	1.0222	
15 minute winter	50	11	94.732	0.274	173.9	0.6610	0.0000	OK	15 minute winter	4.007	51	174.8	2.265	0.819	4.7643	
15 minute winter	51	11	93.976	0.222	192.1	0.5415	0.0000	OK	15 minute winter	4.008	52	191.5	2.522	0.524	1.1511	
15 minute winter	52	11	93.525	0.270	208.8	0.6514	0.0000	OK	15 minute winter	4.009	53	207.9	2.174	0.671	1.6827	
15 minute winter	53	11	93.174	0.341	225.2	0.8313	0.0000		15 minute winter	4.010	54	223.9	2.366	0.853	0.9312	
15 minute winter	54	11	92.930	0.341	241.2	0.8217	0.0000		15 minute winter	4.011	55	240.2	1.899	0.646	1.4494	
15 minute winter	55	11	92.768	0.330	257.5	0.7949	0.0000		15 minute winter	4.012	56	255.9	2.285	0.695	1.5223	
15 minute winter	56	11	92.472	0.285	273.2	0.6796	0.0000	OK	15 minute winter	4.013	17	272.0	2.434	0.457	2.6334	
15 minute winter	17	12	92.176	0.457	659.8	1.0611	0.0000		15 minute winter	1.016	18	653.8	2.273	0.562	7.9629	
15 minute winter	18	13	91.856	0.563	668.1	1.2997	0.0000		15 minute winter	1.017	19	665.8	2.682	1.590	3.1523	
15 minute winter	19	13	91.656	0.387	676.3	0.8987	0.0000	OK	15 minute winter	1.018	20	681.6	2.338	0.346	5.8978	
15 minute winter	20	13	91,419	1.133	692.1	3.3258	0.0000	SURCHARGED	15 minute winter	1.019	21	696.9	1.584	1.262	12.6570	
15 minute winter	21	13	91.266	1.038	707.4	3.0258	0.0000	SURCHARGED	15 minute winter	1.020	22	709.4	1.612	1.290	26.2435	
	22	13	91.009	0.900	719.9	2.6179	0.0000	SURCHARGED	15 minute winter	1.021	23	721.3	1.639	1.312	6.1001	-

	1							T		1			1		1
15 minute winter	59	10	95.165	0.063	18.3	0.1214	0.0000 OK	15 minute winter	6.000	60	18.2	1.093	0.173	0.1307	
15 minute winter	60	10	94.920	0.134	36.5	0.2471	0.0000 OK	15 minute winter	6.001	61	36.2	1.318	0.516	0.2489	
15 minute winter	61	10	94.782	0.160	54.5	0.3002	0.0000 OK	15 minute winter	6.002	62	53.9	1.954	0.681	0.2464	
15 minute winter	62	11	94.509	0.168	72.2	0.3085	0.0000 OK	15 minute winter	6.003	63	71.1	1.293	0.479	0.9040	
15 minute winter	63	11	94.437	0.386	89.4	0.7032	0.0000 SURCHARGED	15 minute winter	6.004	64	86.4	1.231	1.220	4.1014	
15 minute winter	64	11	94.065	0.336	103.7	0.7649	0.0000 OK	15 minute winter	6.005	65	103.1	1.015	0.933	1.4830	
15 minute winter	65	11	94.000	0.316	120.4	0.7133	0.0000 OK	15 minute winter	6.006	66	119.6	1.376	1.076	1.9468	
15 minute winter	66	11	93.854	0.240	136.9	0.5407	0.0000 OK	15 minute winter	6.007	67	135.4	1.836	0.683	3.6281	
15 minute winter	67	11	93.373	0.239	152.7	0.5824	0.0000 OK	15 minute winter	6.008	68	151.1	2.202	0.530	0.6308	
15 minute winter	68	11	93.160	0.211	167.4	0.5086	0.0000 OK	15 minute winter	6.009	69	166.6	2.410	0.519	1.4566	
15 minute winter	69	11	92.654	0.242	183.2	0.5868	0.0000 OK	15 minute winter	6.010	70	182.6	2.585	0.579	0.9920	
15 minute winter	70	11	92.288	0.220	198.7	0.5362	0.0000 OK	15 minute winter	6.011	71	198.9	3.078	0.574	2.1037	
15 minute winter	71	12	91.324	0.214	214.3	0.5112	0.0000 OK	15 minute winter	6.012	23	213.7	3.475	0.450	1.0264	
15 minute winter	23	13	90.895	0.814	925.5	2.4021	0.0000 SURCHARGED	15 minute winter	1.022	24	928.0	2.160	1.688	6.2090	
15 minute winter	24	13	90.290	0.389	938.5	1.1319	0.0000 OK	15 minute winter	1.023	25	940.2	2.156	0.260	9.5234	
15 minute winter	25	13	89.942	0.781	950.7	2.2206	0.0000 OK	15 minute winter	1.024	26	954.7	1.749	1.075	19.7830	
15 minute winter	72	10	93.057	0.115	18.3	0.2122	0.0000 OK	15 minute winter	7.000	73	18.1	0.805	0.422	0.2371	
15 minute winter	73	10	93.004	0.134	36.4	0.2511	0.0000 OK	15 minute winter	7.001	74	36.1	1.625	0.539	0.1890	
15 minute winter	74	11	92.846	0.116	54.3	0.2172	0.0000 OK	15 minute winter	7.002	75	53.1	1.559	0.462	0.8278	
15 minute winter	75	11	92.132	0.729	71.4	1.3251	0.0000 SURCHARGED	15 minute winter	7.003	76	68.2	1.716	1.205	0.4361	
15 minute winter	76	11	91.859	0.586	85.5	1.0943	0.0000 SURCHARGED	15 minute winter	7.004	77	84.8	2.132	1.707	0.5644	
15 minute winter	77	11	91.244	0.177	102.1	0.3252	0.0000 OK	15 minute winter	7.005	78	101.9	2.141	0.580	0.9903	
15 minute winter	78	11	90.758	0.208	119.2	0.3825	0.0000 OK	15 minute winter	7.006	79	119.0	2.543	0.617	0.4381	
15 minute winter	79	11	90.441	0.171	136.3	0.3137	0.0000 OK	15 minute winter	7.007	26	136.3	3.808	0.413	0.2389	
15 minute winter	26	13	89.753	0.665	1076.2	1.9734	0.0000 OK	15 minute winter	1.025	27	1081.9	3.001	1.220	2.4582	
15 minute winter	27	12	89.461	0.386	1089.2	1.5142	0.0000 OK	15 minute winter	1.026	28	1097.2	2.186	0.357	19.6481	
15 minute winter	28	13	89.041	1.006	1107.7	3.9273	0.0000 SURCHARGED	15 minute winter	1.027	29	1104.1	1.742	1.254	16.3837	
15 minute winter	29	13	88.890	0.906	1114.6	3.5366	0.0000 SURCHARGED	15 minute winter	1.028	30-HW	1117.8	1.808	1.263	18.6823	
15 minute winter	30-HW	13	88.708	0.785	1117.8	1.9989	0.0000 OK	15 minute winter	1.029	31-HW	1123.3	2.102	1.268	6.1100	
480 minute winter	31-HW	472	88.573	0.673	145.8	1239.2270	0.0000 OK	480 minute winter	1.030	32-FC	21.0	0.284	0.024	17.2059	
480 minute winter	32-FC	472	88.573	0.738	21.0	5.2193	0.0000 OK	480 minute winter	Hydro-Brake®	33-OF	19.6				682.3
15 minute summer	33-OF	1	87.135	0.000	19.6	0.0000	0.0000 OK								

Results for 100 year +40	0% CC Critical St	orm Duration. Lo	owest mass bal	ance: 99.89%												
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	Link Event (Upstream Depth)	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	12	97.305	1.372	33.3	2.5734	0.0000	FLOOD RISK	15 minute winter	1.000	2	27.8	1.534	0.312	0.6248	
15 minute winter	2	12	97.250	1.850	54.4	2.8292	0.0000	SURCHARGED	15 minute winter	1.001	3	54.0	0.859	0.761	1.0602	
15 minute winter	3	12	97.200	1.937	79.1	4.0467	0.0000	SURCHARGED	15 minute winter	1.002	4	82.8	0.750	0.745	2.9357	
15 minute winter	34	12	100.557	0.965	33.3	1.8096	0.0000	SURCHARGED	15 minute winter	2.000	35	26.3	0.980	0.223	0.3472	
15 minute winter	35	12	100.523	1.378	56.0	2.5615	0.0000	FLOOD RISK	15 minute winter	2.001	36	52.5	1.321	1.321	1.5061	
15 minute winter	36	12	100.077	1.155	80.8	2.0283	0.0000	SURCHARGED	15 minute winter	2.002	37	78.9	1.985	1.971	0.3730	
15 minute winter	40	12	100.281	0.929	33.3	1.7320	0.0000	SURCHARGED	15 minute winter	3.000	41	26.9	0.812	0.502	0.9305	
15 minute winter	41	12	100.203	1.100	57.1	2.0423	0.0000	SURCHARGED	15 minute winter	3.001	42	53.9	1.354	0.939	0.2829	
15 minute winter	42	12	100.076	1.059	83.0	1.9610	0.0000	SURCHARGED	15 minute winter	3.002	37	80.8	2.033	1.179	0.3463	
15 minute winter	37	12	99.750	0.959	185.8	1.7094	0.0000	SURCHARGED	15 minute winter	2.003	38	186.8	2.652	1.147	1.3881	
15 minute winter	38	12	98.990	0.620	213.4	1.1388	0.0000	SURCHARGED	15 minute winter	2.004	39	213.7	3.309	1.115	0.6496	
15 minute winter	39	12	98.231	0.189	242.9	0.3473	0.0000	ОК	15 minute winter	2.005	4	241.3	4.756	0.378	0.5016	
15 minute winter	4	12	97.142	2.037	345.2	4.1151	0.0000	SURCHARGED	15 minute winter	1.003	5	346.1	2.184	2.164	2.8149	
15 minute winter	5	12	96.813	1.827	372.1	3.6983	0.0000	SURCHARGED	15 minute winter	1.004	6	372.8	1.726	1.722	4.2742	
15 minute winter	6	12	96.620	1.674	398.8	3.4026	0.0000	SURCHARGED	15 minute winter	1.005	7	399.7	1.850	1.846	4.0597	
15 minute winter	7	12	96.404	1.496	425.7	3.0611	0.0000	SURCHARGED	15 minute winter	1.006	8	426.5	1.975	1.955	4.5244	
15 minute winter	8	12	96.142	1.352	452.5	2.8136	0.0000	SURCHARGED	15 minute winter	1.007	9	453.4	1.610	1.592	2.7582	
15 minute winter	9	12	96.034	1.261	479.4	2.6650	0.0000	SURCHARGED	15 minute winter	1.008	10	480.3	1.705	1.670	2.5466	
15 minute winter	10	12	95.916	1.159	506.3	2.4925	0.0000	SURCHARGED	15 minute winter	1.009	11	507.2	1.801	1.771	5.7744	
15 minute winter	11	12	95.723	1.002	533.2	2.2629	0.0000	SURCHARGED	15 minute winter	1.010	12	534.0	1.896	1.883	5.5634	
15 minute winter	12	12	95.514	0.827	560.0	1.9458	0.0000	SURCHARGED	15 minute winter	1.011	13	561.8	2.024	1.978	12.8285	
15 minute winter	13	12	95.065	0.537	587.8	1.2043	0.0000	OK	15 minute winter	1.012	14	588.6	2.303	1.615	3.9602	
15 minute winter	14	12	94.876	0.372	614.6	0.8470	0.0000	OK	15 minute winter	1.013	15	616.0	3.560	0.447	4.2283	
15 minute winter	15	13	94.339	0.328	642.0	0.7642	0.0000	OK	15 minute winter	1.014	16	630.1	2.105	0.333	14.7442	
15 minute winter	16	13	93.818	2.061	656.1	4.5363	0.0000	SURCHARGED	15 minute winter	1.015	17	645.9	1.809	1.804	8.9277	
15 minute winter	43	12	100.778	1.278	33.3	2.3963	0.0000	FLOOD RISK	15 minute winter	4.000	44	24.1	0.739	0.401	0.4882	
15 minute winter	44	12	100.742	1.405	55.1	2.6124	0.0000	FLOOD RISK	15 minute winter	4.001	45	48.1	1.209	1.123	0.3068	
15 minute winter	45	12	100.640	1.355	76.8	2,5360	0.0000	FLOOD RISK	15 minute winter	4.002	46	72.1	1.814	1.226	1.0333	
15 minute winter	46	12	100.048	1.096	99.3	2.0556	0.0000	SURCHARGED	15 minute winter	4.003	47	96.1	2,418	1.053	0.3662	
15 minute winter	47	12	99.572	0.902	124.0	1.6905	0.0000	SURCHARGED	15 minute winter	4.004	48	121.3	3.049	1.132	1.4873	
15 minute winter	48	13	97.274	0.253	150.0	0.4658	0.0000		15 minute winter	4.005	49	146.1	2.248	0.590	2.9196	
15 minute winter	49	13	96,624	1.749	177.5	2.9682	0.0000		15 minute winter	4.006	50	156.4	2.222	1.267	1.9521	
15 minute winter	57	13	96.138	1.078	33.3	2.0214	0.0000	SURCHARGED	15 minute winter	5.000	58	25.7	0.864	0.383	0.6214	
15 minute winter	58	13	96.113	1.313	57.1	2.3918	0.0000	FLOOD RISK	15 minute winter	5.001	50	49.8	1.253	1.252	1.2953	
15 minute winter	50	13	95.928	1.470	237.6	3,5477	0.0000	FLOOD RISK	15 minute winter	4.007	51	217.8	2.230	1.020	6.8172	
15 minute winter	51	13	95.133	1.379	249.2	3.3642	0.0000		15 minute winter	4.008	52	236.6	2.455	0.647	1.6607	
15 minute winter	52	13	94.818	1.564	269.9		0.0000	FLOOD RISK	15 minute winter	4.009	53	262.5	2.380	0.848	1.9514	
15 minute winter	53	13	94,408	1.575	295.8	3,8430	1.0324		15 minute winter	4.010	54	290.3	2.632	1,107	1.0881	
15 minute winter	54	13	94.114	1.525	323.6	3.6761	0.0000	FLOOD RISK	15 minute winter	4.011	55	317.6	2.005	0.854	1.8126	
15 minute winter	55	13	93.957	1.525	350.9	3.6610	0.0000	FLOOD RISK	15 minute winter	4.012	56	335.0	2.365	0.910	2.1542	
15 minute winter	56	13	93.759	1.572	368.3	3.7448	0.0000	FLOOD RISK	15 minute winter	4.013	17	361.2	2.457	0.606	4.5494	
15 minute winter	17	13	93.622	1.902	977.0	4.4202	2.0627	FLOOD	15 minute winter	1.016	18	951.5	2.437	0.818	9.9326	
15 minute winter	18	13	93.622	1.874	967.3	4.4202	0.0000	FLOOD RISK	15 minute winter	1.016	19	971.0	2.759	2.319	4.2455	
15 minute winter	19	13	93.166	1.589	984.9	3.6869	0.0000	SURCHARGED	15 minute winter	1.017	20	990.4	2.775	0.503	7.4030	
15 minute winter	20	13	92.656	2.155	1003.7	6.3246	0.0000	SURCHARGED	15 minute winter	1.019	21	1010.8	2.775	1.831	12.6570	
15 minute winter	21	13	92.441	1.894	1003.7	5.5202	0.0000	SURCHARGED	15 minute winter	1.019	22	1010.8	2.297	1.831	26.2435	
	22	13	92.122	1.894	1024.1	4.2887		SURCHARGED	+	1.020	23		2.343	1.912		
15 minute winter	44	13	91.584	1.4/5	1045.6	4.2887	0.0000	SUKCHARGED	15 minute winter	1.027	∠3	1051.2	2.389	1.912	6.1001	(

		1	-					T	T		1			-	
15 minute winter	59	12	96.066	0.964	33.3	1.8532	0.0000 SURCHARGED	15 minute winter	6.000	60	25.3	1.100	0.240	0.3087	
15 minute winter	60	12	96.038	1.252	55.1	2.3128	0.0000 FLOOD RISK	15 minute winter	6.001	61	49.0	1.358	0.698	0.3613	
15 minute winter	61	12	95.918	1.296	79.1	2.4292	0.0000 FLOOD RISK	15 minute winter	6.002	62	73.1	1.957	0.924	0.3555	
15 minute winter	62	12	95.648	1.307	103.3	2.4024	0.0000 FLOOD RISK	15 minute winter	6.003	63	97.3	1.382	0.656	1.1474	
15 minute winter	63	12	95.469	1.417	128.1	2.5845	0.0000 FLOOD RISK	15 minute winter	6.004	64	121.9	1.731	1.722	4.2659	
15 minute winter	64	12	94.632	0.903	153.3	2.0590	0.0000 SURCHARGED	15 minute winter	6.005	65	146.1	1.325	1.322	1.6096	
15 minute winter	65	12	94.508	0.824	178.0	1.8586	0.0000 SURCHARGED	15 minute winter	6.006	66	174.6	1.583	1.570	2.4725	
15 minute winter	66	12	94.280	0.666	207.9	1.4991	0.0000 SURCHARGED	15 minute winter	6.007	67	199.7	1.931	1.007	5.3889	
15 minute winter	67	12	93.723	0.589	233.0	1.4375	0.0000 SURCHARGED	15 minute winter	6.008	68	227.2	2.332	0.796	1.0091	
15 minute winter	68	12	93.508	0.559	260.5	1.3477	0.0000 SURCHARGED	15 minute winter	6.009	69	257.2	2.489	0.802	2.3124	
15 minute winter	69	12	93.061	0.649	290.5	1.5755	0.0000 SURCHARGED	15 minute winter	6.010	70	274.0	2.632	0.869	1.5390	
15 minute winter	70	13	92.658	0.590	307.3	1.4383	0.0000 SURCHARGED	15 minute winter	6.011	71	298.6	3.125	0.861	3.5367	
15 minute winter	71	13	91.820	0.710	331.9	1.6988	0.0000 SURCHARGED	15 minute winter	6.012	23	321.1	3.698	0.676	1.2932	
15 minute winter	23	13	91.342	1.261	1374.1	3.7205	0.0000 SURCHARGED	15 minute winter	1.022	24	1376.2	3.127	2.503	6.7030	
15 minute winter	24	13	90.909	1.008	1395.3	2.9332	0.0000 SURCHARGED	15 minute winter	1.023	25	1397.1	2.290	0.386	14.2586	
15 minute winter	25	13	90.679	1.518	1416.2	4.3166	0.0000 SURCHARGED	15 minute winter	1.024	26	1418.0	2.238	1.597	23.0763	
15 minute winter	72	12	93.930	0.988	33.3	1.8290	0.0000 SURCHARGED	15 minute winter	7.000	73	27.0	0.833	0.629	0.4195	
15 minute winter	73	12	93.888	1.018	56.7	1.9079	0.0000 SURCHARGED	15 minute winter	7.001	74	53.9	1.636	0.805	0.3369	
15 minute winter	74	12	93.746	1.016	82.2	1.9048	0.0000 SURCHARGED	15 minute winter	7.002	75	80.8	2.031	0.703	1.0910	
15 minute winter	75	11	92.948	1.545	108.6	2.8073	2.3403 FLOOD	15 minute winter	7.003	76	93.6	2.354	1.652	0.4361	
15 minute winter	76	11	92.497	1.224	125.6	2.2885	0.0000 FLOOD RISK	15 minute winter	7.004	77	119.2	2.997	2.399	0.5701	
15 minute winter	77	12	91.510	0.443	150.6	0.8148	0.0000 SURCHARGED	15 minute winter	7.005	78	150.4	2.233	0.855	1.4612	
15 minute winter	78	12	91.068	0.518	181.8	0.9504	0.0000 SURCHARGED	15 minute winter	7.006	79	180.9	2.634	0.938	0.6592	
15 minute winter	79	13	90.724	0.454	212.3	0.8354	0.0000 SURCHARGED	15 minute winter	7.007	26	210.3	4.057	0.638	0.4701	
15 minute winter	26	13	90.374	1.286	1617.8	3.8161	0.0000 SURCHARGED	15 minute winter	1.025	27	1619.6	3.125	1.826	4.1303	
15 minute winter	27	13	90.167	1.092	1638.7	4.2772	0.0000 SURCHARGED	15 minute winter	1.026	28	1641.0	2.590	0.534	27.8208	
15 minute winter	28	13	89.712	1.677	1660.1	6.5472	0.0000 SURCHARGED	15 minute winter	1.027	29	1661.7	2.622	1.887	16.3862	
15 minute winter	29	13	89.365	1.381	1680.8	5.3885	0.0000 SURCHARGED	15 minute winter	1.028	30-HW	1681.9	2.654	1.900	19.4004	
720 minute winter	30-HW	720	89.093	1.170	190.8	2.9784	0.0000 SURCHARGED	720 minute winter	1.029	31-HW	189.5	0.774	0.214	7.3061	
720 minute winter	31-HW	720	89.092	1.192	189.5	2597.9090	0.0000 SURCHARGED	720 minute winter	1.030	32-FC	20.9	0.276	0.024	20.4665	
720 minute winter	32-FC	720	89.092	1.257	20.9	8.8833	0.0000 SURCHARGED	720 minute winter	Hydro-Brake®	33-OF	19.6				957.0
15 minute summer	33-OF	1	87.135	0.000	19.6	0.0000	0.0000 OK								

Civil | Structural | Geo-Environmental | Transport Planning

Appendix 6 – SUDS Maintenance Strategy

Travis Baker Limited Project Number 21169

21169- Hither Green Lane SUDS Management Strategy

1. The SUDS Proposals

- 1.1 The SUDs on the proposed development site are to consist of an attenuation basin. The basin will attenuate the contributions of site wide surface water with restricted flows to the receiving watercourses.
- 1.2 The attenuation basins provide storage for all storm events up to and including the 100 year plus 40% event, including the necessary allowance for potential urban creep.

2. Design and Adoption

2.1 This SUDS features will not be adopted by the Local Authority with designs for these areas being assessed through the planning permission process. They have been developed in line with the latest CIRIA guidance as per engineering good practice, and the yet to be adopted DeFRA SuDS design standards.

3. Maintenance

3.1 The below table is a typical maintenance regime for such assets, which is based on good practice and general current procedures:

Activity	Indicative frequency	Typical tasks	Maintenance Liability
		Litter picking	Management Company
Routine/regular maintenance	Monthly	Grass cutting	Management Company
		 Inspection of Inlets, outlets and control structures 	Management Company
		Silt control around components	Management Company
Occasional	Annually	 Vegetation management around components 	Management Company
maintenance		 Suction sweeping of permeable paving 	N/A
		Silt removal from catchpits, soakways and cellular storage	Management Company
		Inlet/outlet repair	Management Company
Dawa dial	As required (tasks to repair	Erosion repairs	Management Company
Remedial maintenance	problems due	Reinstatement of edgings	N/A
mannenance	to damage or vandalism)	Reinstatement following pollution	Management Company
		Removal of silt build up	Management Company

4. Maintenance

4.1 Undertaking the above maintenance regime of the SUDS features, including occasional removal of silt and vegetation that gathers in SUDS, is required to ensure long term performance.

21169- Hither Green Lane SUDS Management Strategy

- 4.2 Organic waste should be used around the SUDS components or schemes to form wildlife piles. If this is not practical it should be composted or, as a last resort, removed to a licensed landfill site. The Environment Agency has adopted a risk-based approach in relation to removal of silt from SUDS (Environment agency 2011).
- 4.3 Green waste from SUDS components and schemes is much the same as waste from normal landscape maintenance and can be managed by:
 - Shredded for surface spreading like a mulch
 - The development of wildlife piles to provide habitat, refuges, shelter etc. When they biodegrade, they can compost.
 - On or offsite (Council Green Waste) composting which can provide useful mulching
 - Disposal to landfill often as a last resort

5. Reliability

- 5.1 The reliability of SUDS is critically dependent on the quality of the design and construction, in particular the management of silt.
- 5.2 The proposed development of SUDS features have been designed to accommodate flows up to the 100yr + 40% envelope within which they are intended to operate with additional freeboard (circa 300mm).
- 5.3 We understand that this design envelope mitigates future flooding risks to the development and also provides an abundant whole life cycle design life in line with modern planning requirements.

6. Health and Safety

- 6.1 These SUDS features have been designed to be as shallow as possible with gentle side slopes, which should minimize health and safety risks.
- 6.2 The design guide used for these features (CIRIA's SUDS Manual and DeFRA's Technical Standards for Sustainable Drainage Systems) incorporates health and safety implications of these SUDS components. Also, the proposals are incorporated within the Construction, Design and Management Regulations 2015, which requires hazards to be removed by good design wherever possible rather than providing mitigation to manage risk.
- 6.3 Those responsible for the maintenance and management of SUDS should take appropriate health and safety precautions for activities and risk assessments should be undertaken.

Civil | Structural | Geo-Environmental | Transport Planning

Appendix 7 – Severn Trent Water Development Enquiry Response and Sewer Records

WONDERFUL ON TAP

30th July 2018

Travis Baker Trinity Point New Road Halesowen B63 3HY

FAO - Mr. D. Baker

Dear Mr. Baker,

Severn Trent Water Ltd

Regis Road Wolverhampton WV6 8RU

Tel: 01902 793871

www.stwater.co.uk net.dev.west@severntrent.co.uk

Contact: Asset Protection (waste water)

Your Ref:

Our Ref: ME/8320201

Proposed Development at Land off Hither Green Lane, Redditch

I refer to your 'Development Enquiry Request' in respect of the above named site. Please find enclosed the sewer records that are included in the fee together with the Supplementary Guidance Notes, which refer to surface water disposal from development sites.

Protective Strips

Due to recent change in legislation, there could be sewers, which have transferred over to the Company that are not shown on the statutory sewer records, but are located on your clients land. These sewers will have protective strips that we will not allow to be built over. The sewers could be identified whilst the land is being surveyed. If this is the case, please contact us for further guidance upon discovery.

Foul Water Drainage

The overall development, for 114 properties will generate approximately, 1.7784 l/s (2xDWF). With a 50/50 split of the development, due to levels generating 0.8892 l/s, per 57 properties. The sewer records show a 375mm diameter foul water sewer, south of the site. In addition, they demonstrate a 150mm diameter foul sewer, within Hither Green Lane. I confirm that foul flows from a development with your suggested splitting of flows (57 to 375mm diameter sewer and 57 to 150mm diameter sewer) should not have an adverse hydraulic impact on the aforementioned sewers. A connection is therefore acceptable to the Company, subject to formal S106 approval (see later). Please note we do not have any recorded flooding incidents, within the area.

WONDERFUL ON TAP

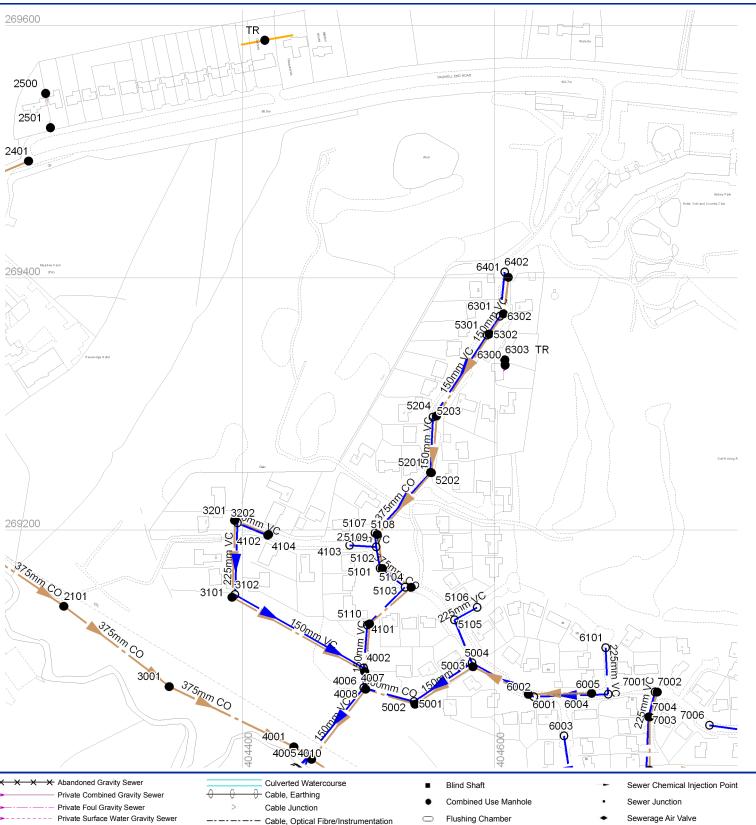
Surface Water Drainage

Under the terms of Section H of the Building Regulations 2010, the disposal of surface water by means of soakaways should be considered as the primary method. If this is not practical and no watercourse is available as an alternative, the use of sewerage should be considered. In addition, other sustainable drainage methods should also be explored before a discharge to the public sewerage system is considered, including a discharge to the adjacent pond. I appreciate, the requirement to split the site, due topography levels. With the majority of the flows, discharging to the River Arrow.

Having viewed the statutory sewer records, they demonstrate a 300>375mm diameter surface water sewer, within Hither Green Lane. If ground conditions are not favourable, for soakaways and other SUDs techniques, evidence should be submitted. This would satisfy the SGN (enclosed). A connection to the aforementioned surface water sewer, for (approximate) 1100m² area should be considered once all avenues have been exhausted. With attenuation and flows in accordance with SGN (Greenfield) or as stipulated by the Lead Local Flood Authority (Local Council Authority), as statutory consultee in the planning process.

Connections

For any new connections including the use, reuse and indirect to the public sewerage system, the developer will need to submit Section 106 application. Our Developer Services department are responsible for handling all such enquiries and applications. To contact them for an application form and associated guidance notes please call 0800 7076600 or download from www.stwater.co.uk


Please quote 8320201 in any future correspondence (including emails) with STW Limited. Please note that Developer Enquiry responses are only valid for 6 months from the date of this letter.

Yours Sincerely,

Matthew Evans

Asset Protection (wastewater)

Severn Trent Water Ltd

INV LEVEL UPSTR INV LEVEL DOWNSTR MAX SIZE YEAR LAID MIN SIZE REFERENCE COVER LEVEL PURP MATL SHAPE GRADIENT CO 375 234.67 SP04692101 89.82 86.90 SP04692401 95.33 93.11 VC 300 0.00 88.63 86.90 86.43 СО 375 234.09 SP04693001 89.61 87.69 VC 150 185.29 SP04693101 88.34 nill CO SP04693102 89.72 88.50 88.11 300 300.87 SP04693201 90.59 88.34 VC 150 87.19 SP04693202 90.62 89.46 88.62 VC 225 67.90 nill CO SP04694001 87.83 86.42 86.31 375 156.36 nill SP04694002 89.46 88.04 87.49 СО 375 29.09 nill SP04694003 87.60 86.31 85.91 СО 375 219.15 87.59 85.80 85.75 СО 300 184.40 nill SP04694004 СО 87.59 85.76 300 215.00 SP04694004 85.80 SP04694004 87.59 85.79 85.75 CO 300 213.50 SP04694006 89.40 87.64 87.27 VC 150 37.95 СО 375 42.13 SP04694007 88.89 87.44 85.82 nill VC 150 SP04694008 88.95 87.25 86.53 98.06 nill SP04694101 91.02 89.26 88.09 CO 375 29.17 VC 150 121.46 SP04694102 90.93 89.28 89.04 nill SP04694103 92.43 90.92 90.85 VC 225 300.29 nill SP04694104 90.91 89.61 89.48 VC 225 200.00 VC SP04695001 90.00 88.10 87.29 150 50.37 87.55 СО 47.14 90.06 88.43 300 nill SP04695002 VC 92.89 88.21 150 22.42 SP04695003 90.66 nill SP04695004 92.87 90.98 88.43 VC 225 21.75 SP04695101 92.57 90.58 90.36 СО 375 113.64 92.57 VC 89.96 150 105.62 nill SP04695102 90.22 CO SP04695103 92.92 90.29 89.25 375 40.80 SP04695104 92.94 89.89 88.95 VC 150 46.73 SP04695105 92.96 91.46 91.00 VC 225 79.93 nill 93.20 91.90 91.49 VC 225 50.22 nill SP04695106 СО SP04695107 92.60 90.89 90.80 375 122.78 92.60 90.47 90.28 VC 150 143.63 SP04695108 92.43 90.78 90.62 СО 375 107.88 nill SP04695109 SP04695110 91.00 88.89 87.69 VC 150 31.84 nill SP04695201 93.96 91.41 90.90 CO 375 127.69 SP04695202 93.94 91.91 90.51 VC 150 46.56 nill СО 94.50 91.71 91.44 375 163.15 nill SP04695203 VC SP04695204 94.15 91.96 91.96 150 0.00 nill SP04695301 95.24 92.42 91.73 CO 375 112.96 SP04695302 95.26 92.98 91.99 VC 150 78.17 nill VC 93.86 91.70 90.72 150 50.19 nill SP04696001 P04696002 93.91 92.03 91.01 VC 225 54.85 89.02 VC SP04696003 225 0.00 nill SP04696004 95.15 92.46 91.74 VC 150 69.46 nill

★ X X Abandoned Gravity Sewer Public Combined Gravity Sewer Public Foul Gravity Sewer → — Public Surface Water Gravity Sewer Trunk Combined Gravity Sewer ---- Trunk Foul Use Gravity Sewer Trunk Surface Water Gravity Sewer Combined Use Pressurised Sewer Foul Use Pressurised Sewer -
→ Surface Water Pressurised Sewer Highway Drain Combined Lateral Drain (SS) Foul Lateral Drain (SS) Surface Water Lateral Drain (SS)

Section 104 Sewers are shown in green
| Sewers that have been transferred to Severn Trent
tter after the 1"# October 2011, but have not been surveyed and
infirmed by Severn Trent Water are shown in orange

----- Cable, Low Voltage Foul Use Manhole ---- Cable, High Voltage Grease Trap ++·++--- Cable, Other Head Node В Housing, Building K Housing, Kiosk Hydrobrake DS Disposal Site □ Lamphole STW Sewage Treatment Works Outfall Housing, Other Overflow Pipe Support Structure Sewage Pumping Facility Petrol Interceptor \times Sewer Facility Connection Inlet / Outlet

Sewerage Hatch Box Point

Sewerage Isolation Valve

Surface Water Manhole

Waste Water Storage

Pre-1937 Properties

TABULAR KEY

Gradient is stated a 1 in...

C.

Sewer pipe data refers to do sewer pipe.

Where the node bifurcates (splits) X and Y indicates downstream sewer pipe.

- MASONRY IN REGULAR COURSES
- MASONRY RANDOMLY COURSED
- POLYETHLENE
- PITCH
- POLYPROPYLENE
- PLASTIC STEEL COMPOSITE
- POLYVINYL CHLORIDE
- REINFORCED PLASTIC MATRIX
- SPILIN (ESPEY) IPON SI - SPUN (GREY) IRON
ST - STEEL
U - UNKNOWN
VC - VITRIFIED CLAY
XXX - OTHER

- NONE
- ASBESTOS CEMENT
- BRICK
- CONCRETE BOX CULVERT
- CAST IRON
- CONCRETE
- CONCRETE
- CONCRETE SEGMENTS (BOLTED)
- DUCTILE IRON
- GLASS REINFORCED CONCRETE
- GLASS REINFORCED PLASTIC
- MASONRY IN REGULAR COURSES
- MASONRY NANDOMLY COURSES
- MASONRY NANDOMLY COURSES

SHAPE

- CIRCULAR - EGG SHAPED OTHER - RECTANGLE S - SQUARE T - TRAPEZOIDAL U - UNKNOWN

MATERIALS

AC
BR
CC
CI
CO
CSB
CSU
DI
GRC
GRC
MAC
MAR
PE
PF
PP
PSC
RPM

PURPOSE

Sewer Node

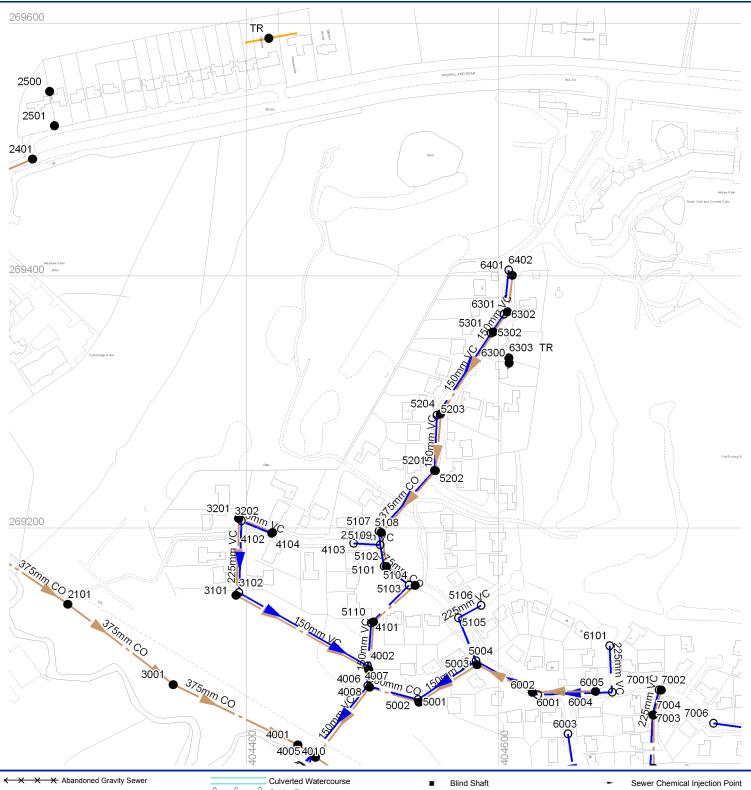
Sewer Pipe Data

- COMBINED - FINAL EFFLUENT - FOUL L - SLUDGE S - SURFACE WATER

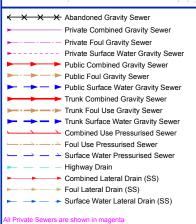
- WEIR
- CASCADE
- DAMBOARD
- SIDE ENTRY
- FLAP VALVE
- BACK DROP
- SIPHON
- HIGHWAY DRAIN BD - BACK DROP S - SIPHON HD - HIGHWAY DRAI S104 - SECTION 104

CATEGORIES

SEVERN


Asset Data Mana PO Box 5344 CV3 9FT Telephone: 0845 601 6616

SEWER RECORD (Tabular)


1:3000 O/S Map scale: This map is centred upon: O / S Grid reference: Date of issue: 30.07.18 404502 x: Sheet No. 1 of 2 269311

1. Do not scale off this Map.
2. This map and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this Map and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of Severn Trent Water's assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.
3. On 1 October 2011 most private severs and private learent admains in Severn Trent Water's sewerage area, which were connected to a public sever as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public severs and public lateral drains. A further transfer takes place on 1 October 2012 (date to be confirmed). Private pumping stations, which from part of these sewers or lateral drains, will transfer to the ownership of Severn Trent Water ones not possess complete records of these assets.

These assets may not be displayed on this Map.
4. Reproduction by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and database right 2004. All rights reserved. Ordnance Survey licence number 100018202.
Document users other than Severn Trent Water business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Sewer No	de	Sewer P	ipe Data							
REFERENCE	COVER LEVEL	INV LEVEL UPSTR	INV LEVEL DOWNSTR	PURP	MATL	SHAPE	MAX SIZE	MIN SIZE	GRADIENT	YEAR LAID
SP04696005	95.50	92.91	92.03	s	VC	С	225	nil	67.08	nill
SP04696101	94.92	93.37	92.99	S	VC	С	225	nil	97.50	nill
SP04696300	nil	nil	nil	F	PVC	С	100	nil	0.00	nill
SP04696301	95.45	92.67	92.51	s	со	С	300	nil	112.69	nill
SP04696302	95.49	93.16	92.99	F	VC	С	150	nil	114.24	nill
SP04696401	96.21	93.57	93.18	F	VC	С	150	nil	75.05	nill
SP04696402	96.16	92.88	92.69	s	со	С	300	nil	185.42	nill
SP04697001	94.45	92.14	92.07	s	VC	С	225	nil	294.57	nill
SP04697002	94.38	92.49	92.32	F	VC	С	150	nil	122.82	nill
SP04697003	94.12	92.03	88.66	s	VC	С	225	nil	13.07	nill
SP04697004	94.06	92.29	90.17	F	VC	С	150	nil	19.81	nill
SP04697006	91.27	88.97	88.49	s	vc	С	225	nil	90.46	nill

Cable, Earthing Cable Junction ----- Cable, Optical Fibre/Instrumentation ----- Cable, Low Voltage ---- Cable, High Voltage Grease Trap ++++-+- Cable, Other Head Node Housing, Building В K Housing, Kiosk — Hydrobrake DS Disposal Site □ Lamphole STW Sewage Treatment Works Outfall Housing, Other Overflow Pipe Support Structure Sewage Pumping Facility Petrol Interceptor Sewer Facility Connection Inlet / Outlet

- Combined Use Manhole Flushing Chamber Foul Use Manhole

- Sewer Junction
- Sewerage Air Valve Sewerage Hatch Box Point
- Sewerage Isolation Valve Soakaway
- Surface Water Manhole
- Waste Water Storage Pre-1937 Properties

TABULAR KEY

- Sewer pipe data refers to do sewer pipe.
- Where the node bifurcates (splits) X and Y indicates downstream sewer pipe. Gradient is stated a 1 in...

SHAPE **PURPOSE**

- CIRCULAR EGG SHAPED - OTHER - RECTANGLE S - SQUARE T - TRAPEZOIDAL U - UNKNOWN
- C COMBINED E FINAL EFFLUENT FOUL L - SLUDGE S - SURFACE WATER

CATEGORIES

MATERIALS

- NONE
AC - ASBESTOS CEMENT
BR - BRICK
CC - CONCRETE BOX CULVERT
CI - CAST IRON
CO - CONCRETE SEGMENTS (BOLTED)
CSU - CONCRETE SEGMENTS (BOLTED)
DI - DUCTILE IRON
GRC - GLASS REINFORCED CONCRETE
GRP - GLASS REINFORCED PLASTIC
MAC - MASONRY IN REGULAR COURSES
MAR - MASONRY BANDOMLY COURSED
PE - PUTCH
PP - POLYETHLENE
PF - PITCH
PP - POLYETHLENE
PSC - PLASTIC STEEL COMPOSITE
PYC - POLYVIN'L CHOICDIE
RPM - REINFORCED PLASTIC MATRIX
SI - SPUN (GREY) IRON
ST STEEL
U - UNKNOWN
VC - VITRIFIED CLAY
XXX - OTHER

W - WEIR
C - CASCADE
DB - DAMBOARD
SE - SIDE ENTRY
FV - FLAP VALVE
BD - BACK DROP
S - SIPHON
HD - HIGHWAY DRAIN
S104 - SECTION 104

Severn Trent Water Limited Asset Data Manag PO Box 5344 CV3 9FT Telephone: 0845 601 6616

SEWER RECORD (Tabular)

O/S Map scale: 1:3000 This map is centred upon: O / S Grid reference: 30.07.18 Date of issue: 404502 X: Sheet No. 2 of 2 269311

Disclaimer Statement:

1. Do not scale off this Map.

2. This map and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this Map and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of Severn Trent Water's assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.

3. On 1 October 2011 most private sewers and private leaver after in Severn Trent Water's weerage area, which were connected to a public sewer as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public sewers and public lateral drains. A further transfer takes place on 1 October 2012 (date to be confirmed). Private pumping stations, which from part of these sewers or lateral drains, will transfer to the ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets.

These assets may not be displayed on this Map.

4. Reproduction by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and database right 2004. All rights reserved. Ordnance Survey licence number 100018202. Document users other than Severn Trent Water business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Civil | Structural | Geo-Environmental | Transport Planning

Appendix 8 – Severn Trent Water Existing Sewer Capacity Check

Liam Hyland

From: Network Solutions < Network.Solutions@severntrent.co.uk>

Sent: 16 September 2021 13:44

To: Mathew Grainger
Cc: Dave Baker

Subject: RE: Hither Green Lane (STW Ref ME/8320201) [Filed 20 Sep 2021 09:29]

Follow Up Flag: Follow up **Flag Status:** Flagged

ST Classification: UNMARKED

Hi Mathew

Sorry for the delay in responding to your query. Envisage the flows from 216 houses (approx.. 3.38 I/s xDWF) may affect the existing performance of the network and therefore it will be necessary to undertake a sewer capacity assessment to understand the impact on the network and infrastructure further downstream.

Can you please confirm the following in order for us to prioritise the sewer capacity assessment and ensure that we can promote a growth scheme if necessary:

- Proposed submission of your Planning Application
- Proposed planned start and completion date.
- Any phasing details of the proposed development
- Planned occupation dates

Sadeq Hadi (Sid),

Senior Evaluation Technician, Network Solutions, Developer Services, Network.solutions@severntrent.co.uk

WONDERFUL ON TAP

From: Mathew Grainger < mathew.grainger@travisbaker.co.uk>

Sent: 12 July 2021 12:35

To: Net Dev West <net.dev.west@severntrent.co.uk>
Cc: Dave Baker <dave.baker@travisbaker.co.uk>
Subject: Hither Green Lane (STW Ref ME/8320201)

Good Afternoon,

A development enquiry was carry out by Severn Trent Water on 30th July 2019, for the above named development. The enquiry states;

The overall development, for 114 properties will generate approximately, 1.7784 l/s (2xDWF). With a 50/50 split of the development, due to levels generating 0.8892 l/s, per 57 properties. The sewer records show a 375mm diameter foul water sewer, south of the site. In addition, they demonstrate a 150mm diameter foul sewer, within Hither Green Lane. I confirm that foul flows from a development with your suggested splitting of flows (57 to 375mm diameter

sewer and 57 to 150mm diameter sewer) should not have an adverse hydraulic impact on the aforementioned sewers.

The number of dwellings has now increased to 216 and our recent preliminary drainage design shows all the foul drainage discharging to the 375mm diameter foul water sewer in the south.

Are you able to confirm if the southern 375dia sewer has enough capacity for the 216 dwellings?

Kind Regards

Mathew Grainger

Associate

Travis Baker Limited

Trinity Point, New Road, Halesowen, West Midlands, B63 3HY

T. 0121 550 8037 DD. 0121 504 0910 W. http://www.travisbaker.co.uk/

Civil Engineering | Geo-Environmental Engineering | Structural Engineering | Transport Planning

This e-mail and its attachments may be confidential and are intended solely for the use of the individual to whom it is addressed. Any views or opinions expressed are solely those of the author and do not necessarily represent those of Travis Baker. If you are not the intended recipient of this e-mail and its attachments, you must take no action based upon them, nor must you copy or show them to anyone. Please contact the sender if you believe you have received this e-mail in error.

THINK GREEN: Do you need to print this e-mail?

Travis Baker is the trading name of:

Travis Baker Limited: Registered in England and Wales 05703678: VAT Registration 881 4949 79

Travis Baker Geo-Environmental Limited: Registered in England and Wales 09453821: VAT Registration 209 3190 23

Travis Baker Transport Planning Limited: Registered in England and Wales 08205643: VAT Registration 144 0064 53

Travis Baker East Midlands Limited: Registered in England and Wales 10239686: VAT Registration 250 9267 03

Registered Office: Trinity Point, New Road, Halesowen, West Midlands, B63 3HY

Severn Trent Plc (registered number 2366619) and Severn Trent Water Limited (registered number 2366686) (together the "Companies") are both limited companies registered in England & Wales with their registered office at Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ This email (which includes any files attached to it) is not contractually binding on its own, is intended solely for the named recipient and may contain CONFIDENTIAL, legally privileged or trade secret information protected by law. If you have received this message in error please delete it and notify us immediately by telephoning +44 2477715000. If you are not the intended recipient you must not use, disclose, distribute, reproduce, retransmit, retain or rely on any information contained in this email. Please note the Companies reserve the right to monitor email communications accordance with applicable law and regulations. To the extent permitted by law, neither the Companies or any of their subsidiaries, nor any employee, director or officer thereof, accepts any liability whatsoever in relation to this email including liability arising from any external breach of security or confidentiality or for virus infection or for statements made by the sender as these are not necessarily made on behalf of the Companies. Reduce waste! Please consider the environment before printing this email

Civil | Structural | Geo-Environmental | Transport Planning

Appendix 9 – Simple Index Assessments for SuDS features

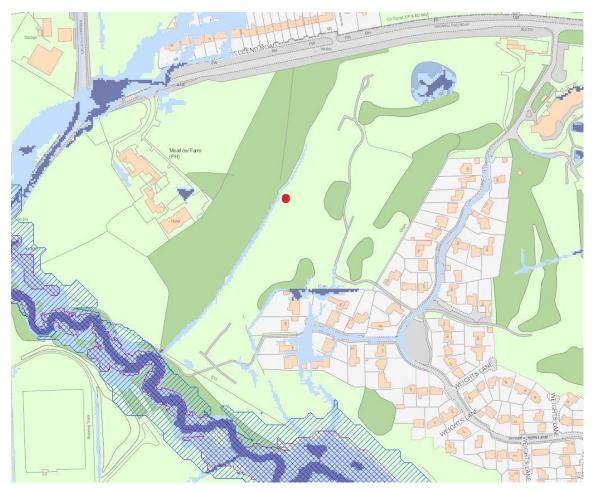
SUMMARY TABLE		DESIGN CONDITIONS										
OSIMIAN TABLE		1	2	3	4							
Land Use Type	Residential parking											
Pollution Hazard Level Pollution Hazard Indices	Low											
TSS Metals Hydrocarbons	0.5 0.4 0.4											
SuDS components proposed	0.4											
	Pond or wetland	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Ponds/wetlands should be preceded by an upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be resuspended in subsequent events									
Component 2	Pervious pavement (where the pavement is not designed as an infiltration component)	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B										
Component 3	None											
SuDS Pollution Mitigation Indices		1										
TSS	>0.95											
Metals	>0.95											
Hydrocarbons	0.85											
Groundwater protection type	None											
Groundwater protection Pollution Mitigation Indices TSS	0											
Metals	0											
Hydrocarbons Combined Pollution Mitigation	ju											
Indices TSS Metals Hydrocarbons Acceptability of Pollution Mitigation TSS Metals Hydrocarbons		Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SuDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England										

		POLICE CONTROL OF THE						
SUMMARY TABLE		DESIGN CONDITIONS 1 2 3 4						
		7	2	3	4			
Land Use Type	Low traffic roads (e.g. residential roads and general access roads, < 300 traffic movements/day)							
Pollution Hazard Level Pollution Hazard Indices	Low							
TSS Metals	0.5 0.4							
Hydrocarbons	0.4							
SuDS components proposed								
Component 1	Pond or wetland	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Ponds/wetlands should be preceded by an upstream component(s) that trap(s) siit, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be resuspended in subsequent events					
Component 2	None							
Component 3	None							
SuDS Pollution Mitigation Indices		"						
TSS	0.7	,						
Metals	0.7							
Hydrocarbons	0.5							
Groundwater protection type	None							
Groundwater protection Pollution Mitigation Indices TSS	0							
Metals Hydrocarbons	0 0							
Combined Pollution Mitigation Indices TSS	0.7	Peteranes to local planning degrapants should also be made.						
Metals Hydrocarbons	0.7 0.7 0.8	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SUDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such						
Acceptability of Pollution Mitigation TSS Metals Hydrocarbons	Sufficient Sufficient Sufficient	proximity of an east with an environmental resignation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England						
riyurocarbons	osos.it							

SUMMARY TABLE		DESIGN CONDITIONS					
JOHNMANT TABLE		1	2	3	4		
Land Use Type	Residential roofing						
Pollution Hazard Level Pollution Hazard Indices	Very low						
TSS Metals	0.2 0.2						
Hydrocarbons	0.05						
SuDS components proposed							
Component 1	Pond or wetland	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Ponds/wetlands should be preceded by an upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be resuspended in subsequent events				
Component 2	None						
Component 3	None						
SuDS Pollution Mitigation Indices							
TSS	0.7						
Metals	0.7 0.5						
Hydrocarbons Groundwater protection type	0.5 None						
Groundwater protection Pollution Mitigation Indices TSS Metals	o o						
Hydrocarbons Combined Pollution Mitigation Indices	U						
TSS Metals Hydrocarbons Acceptability of Pollution Mitigation TSS Metals	0.7	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SUDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSS), should be considered via consultation with relevant conservation bodies such as Natural England					

Civil | Structural | Geo-Environmental | Transport Planning

Appendix 10 – NWWM (LLFA) response


Travis Baker Limited Project Number 21169

21/01830/FUL - Land West Of Hither Green Lane

Residential development (Class C3) with a vehicular access point onto Hither Green Lane, play areas, public open space including footways and cycleways, sustainable urban drainage systems and all other ancillary and enabling infrastructure.

Case Officer: Paul Lester

Deadline for comments: 11/02/2022

Comments

While NWWM is broadly supportive of the principle of development on this site, based on the current proposal for the site there are a several elements that are contrary to policies 17&18 of the Redditch Local Plan. We would raise a <u>Holding Objection</u> to this application until the proposed drainage layout is revised and it addresses concerns raised in the following comments.

The site is located within the catchment of the River Arrow, the site slopes gently from the north east to the south west. Environment Agency fluvial mapping indicates that the site is located mainly within Flood Zone 1, but small areas of the southern part of the site, adjacent to the Arrow, are covered by zones 2 and 3. The EA surface water flood maps show some minor pooling on the site and this is concentrated around existing

drainage features. The supporting FRA suitably covers the main sources of flood risk to the site and concludes that the development site is not at significant flood risk.

There are a series of existing ditchlines which current drain the site. Principally there are two main features one which runs approximately down the centre of the site and a second which follows along the eastern site boundary. There are also several existing ponds located on the site. The largest in the north western part of the site as well as another smaller features on the eastern side. The topographical survey in the FRA does not cover the south eastern part of the site, so it is unclear on the exact details of other features in this part of the site, however a total of 4 ponds have been identified in the preliminary ecological assessment.

Within the FRA an outline drainage strategy has been proposed, the proposed level of retention is acceptable (up to 1 in 100 year AEP + 40% for climate change) and the proposed off site discharge rate is acceptable. However, beyond surface water attenuation the proposed drainage scheme provides minimal further benefits. Calculations for the scheme have been provided, however they have not been assessed as they will need to be revised to accommodate revisions to the drainage layout if the scheme to be acceptable to the LLFA.

The current layout does not suitably consider existing drainage features/ water features and all but the northern pond have been lost. The supplied green space assessment flags the benefits of the existing water features and the ecology report highlights that development proposals should seek to retain/ minimise losses of the standing water habitats. Features should be retained and incorporated by the proposed layout not simply removed. The housing layout should be set around these features, it is likely there could be water nuisance issues for new properties built in the location of former features.

While it is retained northern pond is surrounded by new development which is all proposed to be positively drained and bypass this feature. The result of this is likely the pond will dry up as much of its, already limited catchment area, is lost. The other ponds on the site have not be retained or utilised in the drainage layout.

The use of a single retention feature which is located on the periphery of the development will limit benefits with respect to water quality and amenity. It does include permanent water, which is positive however this it uniformly deep, natural ponds provide a mixture of depth profiles. There are no source control SuDS features provided by the scheme. Features such as permeable paving or drained tree pits should be incorporated into the design.

The site should be split into its natural catchment areas and a series of smaller retention features should be proposed. With the appropriate inclusion of source control features this should ensure there is still suitable attenuation volume provided by the scheme. These features should be incorporated into open space areas so that they provide amenity value. Pedestrian routes can be provided adjacent swales to provide green corridors through the development.

There is minimal reference to water quality for surface water runoff from the site. The stages of treatment approach previously detailed by the CIRIA SuDS manual was amended in the 2015 manual to the Simple Index approach. While the majority of the land uses on the site are classed as low risk it is required that this approach is applied, and mitigation measures are included within the drainage design as appropriate.

It is unclear from STW records if or where the adjacent Meadow Farm pub is connected to mains sewer for foul or surface water. Its needs to be ensured that any existing drainage arrangements for this property which cross the development site should be picked up by the new drainage provided for the development to ensure that it does not negatively affect the property or the proposed development.

In summary the proposed drainage scheme offers limited benefits to the site beyond surface water attenuation. The following alterations will need to be implemented if this scheme is to be acceptable to the LLFA.

- Preserve existing drainage features and incorporate them into the layout and site landscaping
- Provide attenuation to separate sub catchments of the site rather than single large feature.
- Provide source control measures for the site.
- Undertake a Simple Index Assessment for site runoff water quality.

Dave Baker

To: Dave Baker

Subject: FW: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

From: Jodie Hawkins < jodie.hawkins@nwwm.org.uk>

Sent: 28 October 2022 19:28

To: Green, David (Mercia) < david.green@barratthomes.co.uk >

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Hi David,

I have reviewed the revised drainage strategy and can see that you have rerouted the pavement. Secondly, if you are confirming that you have incorporated the second point from my previous email, I can confirm that I am happy with the latest drainage strategy.

Kind regards, Jodie

Jodie Hawkins

Senior Water Management Officer
North Worcestershire Water Management
A shared District Council service covering Bromsgrove, Redditch & Wyre Forest
01562 732545
Wyre Forest House, Finepoint Way, Kidderminster, DY11 7WF

Jodie.Hawkins@nwwm.org.uk

Keep up to date on the latest news via

Our vision is to reduce flood risk while protecting and enhancing the water environment and encouraging sustainable water management

From: Green, David (Mercia) <david.green@barratthomes.co.uk>

Sent: 27 October 2022 11:38

To: Jodie Hawkins < jodie.hawkins@nwwm.org.uk >

Cc: Solanki, Chetan < chetan.solanki@barratthomes.co.uk

Subject: External Email: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Good morning Jodie

Are you happy with the drainage strategy now, please confirm.

Regards

David Green

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310 : DD 0121 713 7385 : M 07342 062783

From: Green, David (Mercia) Sent: 11 October 2022 09:34

To: Jodie Hawkins < jodie.hawkins@nwwm.org.uk >

Cc: Solanki, Chetan < chetan.solanki@barratthomes.co.uk

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Good morning Jodie, I trust you are well.

I attach the revised drainage strategy drawings for your approval. Firstly I can confirm that the items below were already incorporated into the scheme. Secondly, following comments from the tree officer we have reduced the number of plots (around plots 136-140) that does not affect the drainage strategy and have moved the inlet and outlets of the southern pond to reduce the effect on surrounding trees. Again this doesn't impact on the drainage strategy itself.

I would be grateful if you could confirm by return that you are happy with the scheme and will advise the planning officer accordingly.

Regards

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310 : DD 0121 713 7385 : M 07342 062783

From: Jodie Hawkins < jodie.hawkins@nwwm.org.uk >

Sent: 22 September 2022 16:00

To: Green, David (Mercia) < <u>david.green@barratthomes.co.uk</u>> **Cc:** Solanki, Chetan < chetan.solanki@barratthomes.co.uk>

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Hi David,

Apologies it has taken me longer to get back to you than I hoped. I have gone through all your previous correspondence with Tom and can see you have incorporated some of additional things he asked for.

One thing that I did notice hadn't changed the re-route of the pavement with regards to Tom's previous comment....

"The depression that will serve plots 17-20, 204, 214-216 looks to be sitting over the route of a path obviously that will just need to be routed round this".

Can you also confirm if you have incorporated Tom's comment about permeable paving?...

"With respect to the proposed permeable paving the attached detail is one we have specified an another site recently. The last detail would be how we would want the adjacent properties to have their downpipes connected to the paving, then there would need to be an under drained sump which then connects to the adopted sewer."

Kind regards, Jodie

Jodie Hawkins

Water Management Officer
North Worcestershire Water Management
A shared District Council service covering Bromsgrove, Redditch & Wyre Forest
01562 732545
Wyre Forest House, Finepoint Way, Kidderminster, DY11 7WF
Jodie.Hawkins@nwwm.org.uk

Keep up to date on the latest news via

FLOODS VESIKUI BE PREPAREO

Our vision is to reduce flood risk while protecting and enhancing the water environment and encouraging sustainable water management

From: Green, David (Mercia) <david.green@barratthomes.co.uk>

Sent: 05 September 2022 08:37

To: Jodie Hawkins < jodie.hawkins@nwwm.org.uk >

Cc: Solanki, Chetan < chetan.solanki@barratthomes.co.uk

Subject: External Email: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Hi Jodie, thanks for coming back to me.

Hopefully you should be able to see that we have been in correspondence with Tom over the last couple of months and have incorporated additional SUDs features throughout the scheme. Hopefully you will be happy with what we have done and I attach the latest drainage strategy drawings sent to Tom.

Don't hesitate to contact me should you have any further questions.

Regards

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310 : DD 0121 713 7385 : M 07342 062783

From: Jodie Hawkins < jodie.hawkins@nwwm.org.uk>

Sent: 02 September 2022 15:35

To: Green, David (Mercia) < david.green@barratthomes.co.uk >

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Good afternoon,

I am the officer taking over from Tom. If you allow some time to catch up on this application, I will try get and get back to you with a response early next week. In the meantime, if there is anything else, please feel free to contact me.

Kind regards, Jodie

Jodie Hawkins

Water Management Officer
North Worcestershire Water Management
A shared District Council service covering Bromsgrove, Redditch & Wyre Forest
01562 732545
Wyre Forest House, Finepoint Way, Kidderminster, DY11 7WF
Jodie.Hawkins@nwwm.org.uk

Keep up to date on the latest news via

Our vision is to reduce flood risk while protecting and enhancing the water environment and encouraging sustainable water management

From: North Worcestershire Water Management Enquiries < Enquiries@nwwm.org.uk>

Sent: 02 September 2022 15:21

To: Jodie Hawkins < jodie.hawkins@nwwm.org.uk>

Subject: FW: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

North Worcestershire Water Management Enquiries

Wyre Forest District Council A shared District Council service covering Bromsgrove, Redditch & Wyre Forest 01562 732191

Wyre Forest House, Finepoint Way, Kidderminster, DY11 7WF Enquiries@nwwm.org.uk

Keep up to date on the latest news via

Our vision is to reduce flood risk while protecting and enhancing the water environment and encouraging sustainable water management

From: Green, David (Mercia) < david.green@barratthomes.co.uk >

Sent: 02 September 2022 10:31

To: North Worcestershire Water Management Enquiries < Enquiries@nwwm.org.uk>

Subject: External Email: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Good morning, can you please ask the relevant officer to make contact with me please

Regards

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310 : DD 0121 713 7385 : M 07342 062783

From: Green, David (Mercia)
Sent: 24 August 2022 14:58
To: enquiries@nwwm.org.uk

Subject: FW: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Good afternoon

Can you please ask the person taking over from Tom please acknowledge receipt of the attached and confirm their approval or otherwise asap.

Thank you

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310: DD 0121 713 7385: M 07342 062783

From: Green, David (Mercia) Sent: 23 August 2022 13:58

To: Thomas Curwell < Thomas. Curwell@nwwm.org.uk >

Subject: FW: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Hi Tom

Please find attached revised drainage strategy drawings incorporating the additional features that you requested. I trust they meet with your approval but should you require any further information please do not hesitate to contact me.

Regards

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310 : DD 0121 713 7385 : M 07342 062783

From: Dave Baker < dave.baker@travisbaker.co.uk >

Sent: 12 August 2022 12:03

To: Green, David (Mercia) < david.green@barratthomes.co.uk Cc: Matthew Nobbs < matthew.nobbs@travisbaker.co.uk

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

HI David

Please see attached amended drainage strategy drawings.

Kind regards

Dave Baker

Director

Travis Baker Limited

Trinity Point, New Road, Halesowen, West Midlands, B63 3HY

T. 0121 550 8037 M. 07792 970492 http://www.travisbaker.co.uk/

Civil Engineering | Geo-Environmental Engineering | Structural Engineering | Transport Planning

This e-mail and its attachments may be confidential and are intended solely for the use of the individual to whom it is addressed. Any views or opinions expressed are solely those of the author and do not necessarily represent those of Travis Baker. If you are not the intended recipient of this e-mail and its attachments, you must take no action based upon them, nor must you copy or show them to anyone. Please contact the sender if you believe you have received this e-mail in error.

THINK GREEN: Do you need to print this e-mail?

Travis Baker is the trading name of:

Travis Baker Limited: Registered in England and Wales 05703678: VAT Registration 881 4949 79

Travis Baker Geo-Environmental Limited: Registered in England and Wales 09453821: VAT Registration 209 3190 23

Travis Baker Transport Planning Limited: Registered in England and Wales 08205643: VAT Registration 144 0064 53 Travis Baker East Midlands Limited: Registered in England and Wales 10239686: VAT Registration 250 9267 03 Registered Office: Trinity Point, New Road, Halesowen, West Midlands, B63 3HY

From: Green, David (Mercia) <david.green@barratthomes.co.uk>

Sent: 05 August 2022 08:21

To: Dave Baker <dave.baker@travisbaker.co.uk>

Cc: Solanki, Chetan <chetan.solanki@barratthomes.co.uk>

Subject: FW: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch [Filed 12 Aug 2022 10:22]

Hi Dave

Are we able to comply with Tom's suggestions below, if so can you update the drainage strategy.

Regards

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310: DD 0121 713 7385: M 07342 062783

From: Thomas Curwell < Thomas.Curwell@nwwm.org.uk >

Sent: 04 August 2022 19:26

To: Green, David (Mercia) < <u>david.green@barratthomes.co.uk</u>> **Cc:** Solanki, Chetan < <u>chetan.solanki@barratthomes.co.uk</u>>

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Dear David

Sorry for being so slow to come back to you on this. I have been trying to speak to the planning officer at Redditch this week but he has been on leave all week and isn't back till Monday. I have reviewed the revised details you sent over. I think given the limitations of severn trent allowing land drainage to their network and the issues of the invasive species we will have to accept the larger pond not being connected to the network. The additional features you have added are welcome, however can you clarify, is the intention that the surface water ,i.e. downpipes from properties will discharge to these features before draining to the sewer network? If so can you just indicate this clearly on the drawing.

The depression that will serve plots 17-20, 204, 214-216 looks to be sitting over the route of a path obviously that will just need to be routed round this.

With respect to the proposed permeable paving the attached detail is one we have specified an another site recently. The last detail would be how we would want the adjacent properties to have their downpipes connected to the paving, then there would need to be an under drained sump which then connects to the adopted sewer.

If you can confirm these details I can speak to the planning officer next week and provide some updated comments and conditions we would require.

Happy to discuss further if required.

Regards,

Thomas Curwell BSc, MSc, PhD

Water Management Engineer

North Worcestershire Water Management

A shared District Council service covering Bromsgrove, Redditch & Wyre Forest

01527 881206 / 07929305921

Wyre Forest House, Finepoint Way, Kidderminster, DY11 7WF

Thomas.Curwell@nwwm.org.uk

Please note my workdays are Redditch & Bromsgrove: Monday - Wednesday & Friday/ Wyre

Forest: Thursday.

Keep up to date on the latest news via

FLOODS VESIKUI BE PREPAREO

Our vision is to reduce flood risk while protecting and enhancing the water environment and encouraging sustainable water management

From: Green, David (Mercia) < david.green@barratthomes.co.uk>

Sent: 02 August 2022 09:28

To: Thomas Curwell < Thomas.Curwell@nwwm.org.uk <a href="mailto:Cc:Solanki, Chetan < chetan.solanki@barratthomes.co.uk">chetan.solanki@barratthomes.co.uk

Subject: External Email: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

This email originated from outside of the organisation

STOP: Were you expecting this email? Does it look genuine?
THINK: Before you CLICK on any links or OPEN any attachments.

Good morning Tom

Have you had chance to review the revised submission and if so are you happy with the proposals now?

Regards

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310 : DD 0121 713 7385 : M 07342 062783

From: Solanki, Chetan < chetan.solanki@barratthomes.co.uk>

Sent: 05 July 2022 17:27

To: Green, David (Mercia) <david.green@barratthomes.co.uk>; Thomas Curwell <Thomas.Curwell@nwwm.org.uk>

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Hi Thomas,

Hope you're well.

Following your conversation with Dave Baker please find attached a revised set of drainage drawings – the FRA will be amended subject to your approval of these drawings.

I have also attached a statement from our ecologist outlining why it is not feasible to incorporate the large pond to the north of the site.

Is there anything further you need in order to lift your holding objection?

Kind regards,

Chet

Chetan Solanki

Planning Manager

Barratt David Wilson Homes (Mercia)

(a trading name of BDW Trading Ltd)

Remus 2 | 2 Cranbrook Way | Solihull Business Park | Solihull | West Midlands | B90 4GT

E: chetan.solanki@barratthomes.co.uk | DD: 0121 713 7310 | M: 07464 511 484

From: Green, David (Mercia) < david.green@barratthomes.co.uk>

Sent: 29 June 2022 16:32

To: Thomas Curwell < Thomas.Curwell@nwwm.org.uk Cc: Solanki, Chetan < chetan.solanki@barratthomes.co.uk homas.curwell@nwwm.org.uk chetan.solanki@barratthomes.co.uk homas.curwell@nwwm.org.uk homas.curwell@nwww.org.uk homas.curwell@nwwm.org.uk <a href="mailto:homas.curwell@nwwm.o

Subject: RE: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

Thanks Tom, it's New Zealand Pigmy weed in the large pond that our ecologist advise:

6.5 INVASIVE PLANT SPECIES

The desk study provided no records of invasive plant species within a 1 km radius of the survey area. The invasive plant species New Zealand pigmyweed was identified within the lake on site. This species is listed on Schedule 9 of the Wildlife and Countryside Act 1981 (as amended), and it is therefore an offence to allow it to spread in the wild. Works near to the pond may cause this species to spread. Therefore, invasive plant species are a notable consideration for the proposed development and a recommendation has been made in Section 7.4.

We'll elaborate more in our resubmission.

I've asked Travis Baker to come up with some ideas and our arboriculturalist to give a view on any tree removal that might be needed to deliver the SUDs features. I'm away for a fortnight but our planning manager, Chetan Solanki, will co-ordinate matters in my absence as I would aim to get something back to you that you can support before my return.

Regards

David Green

Senior Technical Manager

BARRATT HOMES | DAVID WILSON HOMES

(trading names of BDW Trading Limited)

Mercia Division | Remus 2 | 2 Cranbrook Way | Solihull | B90 4GT

Tel 0121 713 7310 : DD 0121 713 7385 : M 07342 062783

From: Thomas Curwell < Thomas.Curwell@nwwm.org.uk>

Sent: 29 June 2022 15:49

To: Green, David (Mercia) < <u>david.green@barratthomes.co.uk</u>>

Subject: *EXTERNAL: 21/01830/FUL - Land West Of Hither Green Lane, Redditch

EXTERNAL EMAIL WARNING

<u>Please do not click on LINKS or ATTACHMENTS</u> where you are unsure of its origin. In such cases delete the email.

Hi David,

Following our conversation today regarding the above site these are my contact details.

Regards,

Thomas Curwell BSc, MSc, PhD
Water Management Engineer
North Worcestershire Water Management
A shared District Council service covering Bromsgrove, Redditch & Wyre Forest
01527 881206 / 07929305921

Wyre Forest House, Finepoint Way, Kidderminster, DY11 7WF

Thomas.Curwell@nwwm.org.uk

Please note my workdays are Redditch & Bromsgrove: Monday - Wednesday & Friday/ Wyre Forest: Thursday.

Keep up to date on the latest news via

Our vision is to reduce flood risk while protecting and enhancing the water environment and encouraging sustainable water management

Confidentiality Notice

These details do not constitute an electronic signature. Wyre Forest District Council does not accept service of documents by email. This communication and any attachment may contain confidential and privileged information. If the email has been sent to you in error you may not disclose its content to anyone else or copy or forward it in any form. Please notify the sender about this error and delete this email. No employee or agent is authorised to conclude any binding agreement on behalf of Wyre Forest District Council with another party by email.

Disclaimer

Although this email and attachments have been scanned for viruses and malware, Wyre Forest District Council accepts no liability for any loss or damage arising from the receipt or use of this communication.

Monitoring of Email

Wyre Forest District Council may monitor traffic data and the content of email for lawful business purposes.

The sender of this e-mail is a member of the Barratt Developments PLC group of companies, the ultimate parent of which is Barratt Developments PLC (company number 00604574). Barratt Developments PLC is registered in England and Wales with its registered office at Barratt House, Cartwright Way, Forest Business Park, Bardon Hill, Coalville, Leicestershire LE67 1UF, together with its principal subsidiaries BDW Trading Limited (03018173), and Wilson Bowden Developments Limited (00948402). Barratt Homes, Barratt London and David Wilson Homes are trading names of BDW Trading Limited. This e-mail message is meant only for use by the intended addressee and may contain privileged and/or confidential information. If you have received this message in error please notify us and remove it from your system. Please view our 'Email Addendum v2.0' at www.barrattcommercialsupport.co.uk/barratt-developments-plc-email-a for further details.

The sender of this e-mail is a member of the Barratt Developments PLC group of companies, the ultimate parent of which is Barratt Developments PLC (company number 00604574). Barratt Developments PLC is registered in England and Wales with its registered office at Barratt House, Cartwright Way, Forest Business Park, Bardon Hill, Coalville, Leicestershire LE67 1UF, together with its principal subsidiaries BDW Trading Limited (03018173), and Wilson Bowden Developments Limited (00948402). Barratt Homes, Barratt London and David Wilson Homes are trading names of BDW Trading Limited. This e-mail message is meant only for use by the intended addressee and may contain privileged and/or confidential information. If you have received this message in error please notify us and remove it from your system. Please view our 'Email Addendum v2.0' at www.barrattcommercialsupport.co.uk/barratt-developments-plc-email-a for further details.

The sender of this e-mail is a member of the Barratt Developments PLC group of companies, the ultimate parent of which is Barratt Developments PLC (company number 00604574). Barratt Developments PLC is registered in England and Wales with its registered office at Barratt House, Cartwright Way, Forest Business Park, Bardon Hill, Coalville, Leicestershire LE67 1UF, together with its principal subsidiaries BDW Trading Limited (03018173), and Wilson Bowden Developments Limited (00948402). Barratt Homes, Barratt London and David Wilson Homes are trading names of BDW Trading Limited. This e-mail message is meant only for use by the intended addressee and may contain privileged and/or confidential information. If you have received this message in error please notify us and remove it from your system. Please view our 'Email Addendum v2.0' at www.barrattcommercialsupport.co.uk/barratt-developments-plc-email-a for further details.

The sender of this e-mail is a member of the Barratt Developments PLC group of companies, the ultimate parent of which is Barratt Developments PLC (company number 00604574). Barratt Developments PLC is registered in England and Wales with its registered office at Barratt House, Cartwright Way, Forest Business Park, Bardon Hill, Coalville, Leicestershire LE67 1UF, together with its principal subsidiaries BDW Trading Limited (03018173), and Wilson Bowden Developments Limited (00948402). Barratt Homes, Barratt London and David Wilson Homes are trading names of BDW Trading Limited. This e-mail message is meant only for use by the intended addressee and may contain privileged and/or confidential information. If you have received this message in error please notify us and remove it from your system. Please view our 'Email Addendum v2.0' at www.barrattcommercialsupport.co.uk/barratt-developments-plc-email-a for further details.

The sender of this e-mail is a member of the Barratt Developments PLC group of companies, the ultimate parent of which is Barratt Developments PLC (company number 00604574). Barratt Developments PLC is registered in England and Wales with its registered office at Barratt House, Cartwright Way, Forest Business Park, Bardon Hill, Coalville, Leicestershire LE67 1UF, together with its principal subsidiaries BDW Trading Limited (03018173), and Wilson Bowden Developments Limited (00948402). Barratt Homes, Barratt London and David Wilson Homes are trading names of BDW Trading Limited. This e-mail message is meant only for use by the intended addressee and may contain privileged and/or confidential information. If you have received this message in error please notify us and remove it from your

system. Please view our 'Email Addendum v2.0' at www.barrattcommercialsupport.co.uk/barratt-developments-plc-email-a for further details.

The sender of this e-mail is a member of the Barratt Developments PLC group of companies, the ultimate parent of which is Barratt Developments PLC (company number 00604574). Barratt Developments PLC is registered in England and Wales with its registered office at Barratt House, Cartwright Way, Forest Business Park, Bardon Hill, Coalville, Leicestershire LE67 1UF, together with its principal subsidiaries BDW Trading Limited (03018173), and Wilson Bowden Developments Limited (00948402). Barratt Homes, Barratt London and David Wilson Homes are trading names of BDW Trading Limited. This e-mail message is meant only for use by the intended addressee and may contain privileged and/or confidential information. If you have received this message in error please notify us and remove it from your system. Please view our 'Email Addendum v2.0' at www.barrattcommercialsupport.co.uk/barratt-developments-plc-email-a for further details.